Sunday, October 24, 2010

SISTEM PERIODIK UNSUR (SPU)


Suatu perkembangan baru terjadi pada awal abad 20, yaitu ketika John Dalton mengemukakan teorinya tentang atom. Menurut Dalton, setiap unsur mempunyai atom-atom dengan sifat-sifat tertentu yang berbeda dari atom unsur lainnya. Salah satu perbedaan antar atom unsur itu adalah massanya. Akan tetapi, Dalton belum dapat menentukan massa atom.

Sebagaimana diketahui atom mempunyai massa yang amat kecil. Para ahli pada masa itu belum dapat menentukan massa atom individu. Sebagai gantinya mereka menggunakan massa atom relatif, yaitu perbandingan massa antar-atom yang satu terhadap yang lainnya. Metode penentuan massa atom relatif dikemukakan oleh Berzelius (1814) dari Swedia dan P. Dulong dan A. Petit (1819), keduanya darl Perancis.

Berzelius maupun Dulong dan Petit menentukan massa atom relatif berdasarkan kalor jenis unsur. Massa atom relatif merupakan sifat penting unsur dan merupakan sifat spesifik, karena setiap unsur mempunyai massa atom relatif tertentu yang berbeda dari unsur lainnya. Dobereiner, Newlands, Mendeleev, dan Lothar Meyer membuat pengelompokan unsur berdasarkan massa atom relatif.

PERKEMBANGAN TABEL PERIODIK UNSUR

1. Hukum Triade Dobereiner

Pada tahun 1829, Johan Wolfgang Dobereiner, seorang professor kimia di Jerman, mengemukakan bahwa massa atom relatif Strontium sangat dekat dengan massa rata-rata dari dua unsur lain yang mirip dengan strontium, yaitu Kalsium dan Barium. Dobereiner juga menemukan beberapa kelompok unsur lain seperti itu. Karena itu, Dobereiner mengambil kesimpulan bahwa unsur-unsur dapat dikelompokkan ke dalam kelompok-kelompok tiga unsur yang disebutnya Triade. Akan tetapi, Dobereiner belum berhasil menunjukkan cukup banyak triade sehingga aturan tersebut bermanfaat.

Penggambaran Triade Doberainer adalah sebagai berikut :TRIADE Ar Rata-rata Unsur ditengah
Kalsium 40
Stronsium ?
Barium 137


Meskipun gagasan yang dikemukakan oleh Dobereiner selanjutnya gugur (tidak berhasil), tetapi hal tersebut merupakan upaya yang pertama kali dilakukan dalam menggolongkan unsur.
2. Hukum Oktaf Newlands

Pada tahun 1866, John A.R Newlands seorang ahli kimia berkebangsaan Inggris mengemukakan bahwa unsur-unsur yang disusun berdasarkan urutan kenaikan massa atomnya mempunyai sifat yang akan berulang tiap unsur kedelapan. Artinya, unsur pertama mirip dengan unsur kedelapan, unsur kedua mirip dengan unsur kesembilan, dan seterusnya.

Sifat keperiodikan unsur berdasarkan urutan kenaikan massa atom setiap kelipatan delapan dinamakan hukum oktaf. Saat itu, baru ditemukan 60 unsur. Gas mulia tidak termasuk dalam pengelompokan sistem oktaf karena belum ditemukan .

Berikut ini disampaikan pengelompokan unsur berdasarkan hukum oktaf Newlands, yaitu sebagai berikut :H F Cl Co/Ni Br Pd I Pt
Li Na K Cu Rb Ag Cs Tl
Be Mg Ca Zn Sr Cd Ba/V Pb
B Al Cr Y Ce/La U Ta Th
C Si Ti In Zr Sn W Hg
N P Mn As Di/Mo Sb Nb Bi
O S Fe Se Ro/Ru Te Au Os


Beberapa unsur ditempatkan tidak urut sesuai massanya dan terdapat dua unsur yang ditempatkan di kolom yang sama karena kemiripan sifat.
3. Sistem Periodik Mendeleyev

Pada tahun 1869, Dmitri Ivanovich Mendeleyev seorang ahli kimia berkebangsaan Rusia menyusun 65 unsur yang sudah dikenal pada waktu itu. Mendeleev mengurutkan unsur-unsur berdasarkan kenaikan massa atom dan sifat kimianya.

Pada waktu yang sama, Julius Lothar Meyer membuat susunan unsur-unsur seperti yang dikernukakan oleh Mendeleyev. Hanya saja, Lothar Meyer menyusun unsur-unsur tersebut berdasarkan sifat fisiknya. Meskipun ada perbedaan, tetapi keduanya menghasilkan pengelompokan unsur yang sama.

Mendeleyev menyediakan kotak kosong untuk tempat unsur-unsur yang waktu itu belum ditemukan, seperti unsur dengan nomor massa 44, 68, 72, dan 100. Mendeleyev telah meramal sifat-sifat unsur tersebut dan ternyata ramalannya terbukti setelah unsur-unsur tersebut ditemukan. Susunan unsur-unsur berdasarkan hukum Mendeleev disempurnakan dan dinamakan sistem periodik Mendeleyev.

Sistem periodik Mendeleev terdiri atas golongan (unsur-unsur yang terletak dalam satu kolom) dan periode (unsur-unsur yang terletak dalam satu baris). Tabel sistem periodik Mendeleyev yang dibuat adalah sebagai berikut :Periode Gol.I Gol.II Gol.III Gol.IV Gol.V Gol.VI Gol.VII Gol.VIII
1 H 1
2 Li 7 Be 9,4 B 11 C 12 N 14 O 16 F 19
3 Na 23 Mg 24 Al 27,3 Si 28 P 31 S 32 C 35,5
4 K 39 Ca 40 ? (44) Ti 48 V 51 Cr 52 Mn 55 Fe 56, Co 59
Ni 59, Cu 63
5 Cu 63 Zn 65 ? (68) ? (72) As 75 Se 78 Br 80
6 Rb 86 Sr 87 ?Yt 88 Zr 90 Nb 94 Mo 96 ? (100) Ru 104, Rh 104
Pd 106, Ag 108
7 Ag 108 Cd 112 In 115 Sn 118 Sb 122 Te 125 I 127 ?
8 Cs 133 Ba 137 ?Di 138 ?Ce 140 ? ? ?
9 ? ? ? ? ? ? ?
10 ? ? ?Er 178 ?La 180 Ta 182 W 184 ? Os 195, Ir 197
11 Au 199 Hg 200 Tl 204 Pb 207 Bi 208 ? ? Pt 198, Au 199
12 ? ? ? Th 231 ? U 240 ?


4. Pengelompokan Unsur Berdasarkan Sistem Periodik Modern

Sistem periodik Mendeleyev dikemukakan sebelum penemuan teori struktur atom, yaitu partikel-partikel penyusun atom. Partikel penyusun inti atom yaitu proton dan neutron, sedangkan elektron mengitari inti atom. Setelah partikel-partikel penyusun atom ditemukan, ternyata ada beberapa unsur yang mempunyai jumlah partikel proton atau elektron sama, tetapi jumlah neutron berbeda. Unsur tersebut dikenal sebagai isotop. Jadi, terdapat atom yang mempunyai jumlah proton dan sifat kimia sama, tetapi massanya berbeda karena massa proton dan neutron menentukan massa atom.

Dengan demikian, sifat kimia tidak ditentukan oleh massa atom, tetapi ditentukan oleh jumlah proton dalam atom tersebut. Jumlah proton digunakan sebagai nomor atom unsur dan unsur- unsur disusun berdasarkan kenaikan nomor atom.

Ternyata, kenaikan nomor atom cenderung diikuti dengan kenaikan massa atomnya.

Keperiodikan sifat fisika dan kimia unsur disusun berdasarkan nomor atomnya. Pernyataan tersebut disimpulkan berdasarkan hasil percobaan Henry Moseley pada tahun 1913. Sistem periodik yang telah dikemukakan berdasarkan percobaan Henry Moseley merupakan sistem periodik modern dan masih digunakan hingga sekarang.

Sistem periodik unsur modern merupakan modifikasi dari sistem periodik Mendeleyev. Perubahan dan penyempumaan dilakukan terhadap sistern periodik Mendeleyev terutama setelah penemuan unsur-unsur gas mulia. Mendeleyev telah meletakan dasar-dasar yang memungkinkan untuk perkembangan sistem periodik unsur.
5. Golongan dan Periode Unsur dalam Tabel Sistem Periodik Unsur Modern

Unsur-unsur dalam tabel sistem periodik modern disusun berdasarkan kenaikan nomor atom. Karena sistem periodik yang disusun berbentuk panjang, maka tabel periodik yang sekarang ini disebut tabel periodik panjang. Terkadang disebut pula tabel periodik modern, dikarenakan disusun oleh konsep-konsep yang sudah modern.

Berbeda dengan tabel periodik Mendeleyev, karena berbentuk pendek, maka sering disebut sistem periodik pendek. Pada sistem periodik bentuk panjang, sifat unsurnya merupakan fungsi periodik dari nomor atomnya. Hal ini berarti bahwa sifat unsur tergantung dari nomor atomnya.

Pada tabel periodik bentuk panjang, juga dikenal istilah periode dan golongan. Penyusunan unsur dengan arah mendatar ke kanan disebut periode, sedangkan penyusunan unsur dengan arah ke bawah disebut golongan. Tabel periodik bentuk panjang terdiri atas 7 periode dan 8 golongan. Adapun tampilan fisik tabel Sistem Periodik Modern, adalah sebagai berikut eriode dibedakan menjadi periode pendek dan periode panjang, sedangkan golongan dibedakan menjadi golongan A (golongan utama) dan golongan B (golongan transisi). Periode pendek mencakup periode 1 (terdiri dari 2 unsur), periode 2 (terdiri dari 8 unsur) dan periode 3 (terdiri dari 8 unsur). Sedangkan periode panjang mencakup periode 4 sampai dengan periode 7.
a. Golongan

Golongan unsur pada sistem periodik unsur modern disusun berdasarkan jumlah elektron valensi (elektron yang terletak pada kulit terluar). Unsur dalam satu golongan mempunyai sifat yang cenderung sama dan ditempatkan dalam arah vertikal (kolom).

Pada sistem periodik unsur modern, golongan dibagi menjadi 18 berdasarkan aturan IUPAC. Berdasarkan aturan Amerika, sistem periodik unsur modern dibagi dua golongan yaitu golongan A dan B. Jadi, golongan unsur dari kiri ke kanan ialah IA, IIA, 11113, IVB, VB, VIB, VIIB, VIIIB, IB, 1113, IIIA, IVA, VA, VIA, VIIA, dan VIIIA. Umumnya, digunakan pembagian golongan menjadi A dan B.

Golongan unsur pada sistem periodik unsur modern mempunyai nama khusus yaitu sebagai berikut :Golongan Nama Khusus Unsur-unsur
IA 1 Alkali Li, Na, K, Rb, Cs, dan Fr
IIA 2 Alkali Tanah Be, Mg, Ca, Sr, Ba, dan Ra
IIIA 13 Boron B, Al, Ga, In, dan Tl
IVA 14 Karbon C, Si, Ge, Sn, dan Pb
VA 15 Nitrogen N, P, As, Sb, dan Bi
VIA 16 Oksigen O, S, Se, Te, dan Po
VIIA 17 Halogen F, Cl, Br, I, dan At
VIIIA 18 Gas Mulia He, Ne, Ar, Kr, Xe, dan Rn

b. Periode

Periode unsur pada sistem periodik unsur modem disusun dalam arah horisontal (baris) untuk menunjukkan kelompok unsur yang mempunyai jumlah kulit sama.

Sistem periodik bentuk panjang terdiri atas 7 periode sebagai berikut :

1) Periode 1 = periode sangat pendek berisi 2 unsur, yaitu H dan He

2) Periode 2 = periode pendek berisi 8 unsur

3) Periode 3 = periode pendek berisi 8 unsur

4) Periode 4 = periode panjang berisi 18 unsur

5) Periode 5 = periode panjang berisi 18 unsur

6) Periode 6 = periode sangat panjang berisi 32 unsur

7) Periode 7 = periode yang unsur-unsurnya belum lengkap berisi 30 unsur

Pada periode 6 termasuk periode sangat panjang, yaitu berisi 32 unsur.

Golongan IIIB periode 6 berisi 14 unsur dengan sifat mirip yang dinamakan golongan lantanida.

Begitu juga golongan IIIB periode 7 berisi 14 unsur dengan sifat mirip dinamakan golongan aktinida.

Unsur golongan aktinida dan lantanida biasanya dituliskan terpisah di bawah. Golongan lantanida dan aktinida disebut golongan transisi dalam.
6. Penetapan Golongan dan Periode

Golongan dan periode dapat ditentukan dengan cara menuliskan konfigurasi elektron. Konfigurasi elektron adalah penataan elektron dalarn atom yang ditentukan berdasarkan jumlah elektron.

Pada konfigurasi elektron, jumlah elektron valensi menunjukkan nomor golongan, sedangkan jumlah kulit yang sudah terisi elektron (n terbesar) menunjukkan periode.

Wednesday, October 20, 2010

unsur organik (karbon)



Karbon adalah salah satu unsur yang terdapat dialam dengan symbol dalam sistem peridoik adalah “C”. Nama “carbon” berasal dari bahasa latin “carbo” yang berarti “coal” atau “charcoal”. Istilah “coal” menyatakan sediment berwarna hitam atau coklat kehitaman yang bersifat mudah terbakar dan terutama memiliki komposisi utama belerang, hydrogen, oksigen, dan nitrogen.

Karbon memiliki nomor atom 6 dan nomor massa 12,011, terletak pada golongan 4A atau 14 dan terdapat dalam periode 2 dan blok p. Konfigurasi electron atom karbon adalah 1s2 2s2 2p2 atau [He] 2s2 2p2 dengan susunan electron dalam kulit atomnya adalah 2 4 (lihat gambar disamping). Jumlah tingkat energinya adalah 2, dimana tingkat pertama terdapat 2 elektron dan tingkat kedua terdapat 4 elektron.

Karbon merupakan unsur ke-19 yang paling banyak terdapat di kerak bumi yaitu dengan prosentase berat 0,027%, dan menjadi unsur paling banyak ke-4 terdapat jagat raya setelah hydrogen, helium, dan oksigen. Ditemukan baik di air, darat, dan atmosfer bumi, dan didalam tubuh makhluk hidup. Karbon membentuk senyawaan hampir dengan semua unsur terutama senyawa organic yang banyak menyusun dan menjadi bagian dari makhluk hidup.

Sumber Karbon


Karbon terdapat tidak hanya dibumi akan tetapi dijagat raya sebagai bagian dari matahari, bintang, planet, komet, dan atmosfer planet. Diatmosfer bumi diperkirakan terdapat CO2 sebanyak 810 gigaton dan sekitar 36000 gigaton terlarut dalam air yang ada dibumi. 1900 gigaton terdapat dalam biosfer. Hidrokarbon seperti coal, petroleum, dan gas alam menyumbang sekitar 900 gigatin dan 150 gigaton terdapat dalam cadangan minyak bumi.

Sumber karbon yang lain adalah dalam mineral karbonat sepeti limestone, dolomite, dan marble dan coal menjadi salah satu sumber karbon yang terpenting dimana anthracite mengandug 92-98% karbon. Selain itu sumber karbon yang lain adalah grafit dan diamond.

Biosfer, Lautan, dan Atmosfer
Terdapat dalam bentuk CO dan CO di atmosfer bumi, dalam tubuh makhluk hidup dibiosfer dan lautan berkisar 0,45×1018 Kg

Organik Karbon
Terdapat dalam hidrokarbon, petroleum, natural gas sekitar 13,2×1018 Kg

Batuan Karbonat (Limestone-dolomit-marble)

Terdapat dalam bentuk limestone, dolomit, marbel, dll Limestone merupakan batuan sediment yang komposisi utamanya adalah kalsium karbonat CaCO3. Dolomit merupakan batuan sediment karbonat dan mineral yang komposisi utamanya adalah magnesiumkalsium karbonat CaMg(CO3)2. Marble merupakan batuan metaforfosis yang dihasilkan dari proses metamorfosis limestone , dolomite, atau seperntine.

Coal
Coal adalah sediment berwarna hitam atau coklat kehitaman yang bersifat mudah terbakar dan terutama memiliki komposisi utama belerang, hydrogen, oksigen, dan nitrogen. Antrasite adalah jenis coal dengan kandungan karbon yang tinggi dan sedikit ketidakmurnian sekitar 92-98%

Grafit
Grafit adalah salah satu bentuk alotrop dari karbon dan biasa dipakai untuk tinta dan pengisi pensil. Karbon merupakan coal dengan kemurnian yang sangat tinggi diatas antrasite.

Berlian/Diamond
Diamond adalah salah satu bentuk alotrop karbon dimana struktur atom C tersusun sebagai kubus berpusat muka diamond lebih stabil dibandingkan grafit, memiliki kekerasan yang tinggi dan konduktifitas yang besar

Cara Membuat Karbon


Produksi Diamond

Sampai tahun 1955 diamond merupakan produk alam yang belum dapat diproduksi oleh manusia. Berbagai macam cara dicari untuk membuat diamond dengan berbagai macam penelitian dan sampai pada akhir tahun tersebut akhirnya sintesis diamond dapat dilakukan, dimana sejumlah industri membuat diamond dari grafit dengan temperatur dan tekanan tinggi dan sampai sekarang menjadi barang produksi masal yang sangat bagus marketnya.

kristal diamond dibuat dari karbon tetrahedra seperti kristal silikon. Proses pembuatan diamond salah satunya menggunakan teknik ” High Pressure High Temperature (HPHT)”, warna dari diamond sintesis ini umumnya kuning akibat impuritas dari nitrogen. Beberapa warna lain seperti pink, biru, atau hijau disebabkan penambahan boron.

Metode yang popular yang lain adalah menumbuhkan diamon sintesis dengan cara deposisi kimia uap atau biasa disebut sebagai chemical vapor deposition (CVD). Pertumbuhan ini terjadi pada tekanan rendah dibawah tekanan atmosfer dengan melibatkan pemasukan campuran gas methana dan hidrogen dengan perbandingan 99:1 dalam suatu reaktor dan kemudian mensplit keduanya sehingga menjadi radikal dalam lingkungan plasma dengan bantuan gelombang mikro. Kristal diamond akan terbentuk dengan ketebalan beberapa milimeter hingga ketebalan yang diinginkan.

Pembuatan Karbon

Karbon terdapat dialam sebagai grafit . Grafit buatan dengan mereaksikan coke dengan silica (SiO2) dengan reaksi sebagai berikut:

SiO2 + 3C (2500°C) ? “SiC” ? Si (g) + C(graphite)

Karbon juga dapat dibuat dari pembakaran hidrokarbon atau coal, atau yang lainnya dengan kondisi udara yang terbatas sehigga terjadi pembakaran yang tidak sempurna.

Sifat Karbon

Sifat Fisika
» Fasa pada suhu kamar : padat
» Densitas : 2,267 g/cm3 (grafit) 3,515 g/cm3 (diamond)
» Titik sublimasi : 3642 C
» Tripel point : 4327 C
» Panas Fusi : 117 kJ/mol
» Kalor jenis : 8,517 J/molK (grafit) 6,155 J/molK (diamond)

Sifat Kimia
» Bilangan oksidasi : 4,3,2,1,0,-1,-2,-3,-4
» Elektronegatifitas : 2,55 (skala pauli)
» Energi ionisasi ke-1 : 1086 kJ/mol
» Energi ionisasi ke-2 : 2352,6 kJ/mol
» Energi ionisasi ke-3 : 4620,5 kJ/mol
» Jari-jari kovalen : 77(sp3) 73(sp2) 69(sp) pm
» Jari-jari VanderWaals : 170 pm
» konduktifitas termal : 119-165 (grafit) 900-2300 (diamond) W/mK
» Struktur kristal : heksagonal

Sifat Kimia Yang Lain

Bentuk Alotrop

Alotrop adalah sifat sejumlah tertentu unsur dimana unsur ini mampu berada dalam dua tau lebih bentuk, pada setiap alotrop atom-atom unsur tersebut berikatan dengan cara yang berbeda sehingga membentuk modifikasi struktur yang berbeda pula. Berbagai macam alotrop karbon adalah:

Diamond

Diamond adalah salah satu contoh alotrop yang terbaik dari karbon dan memiliki nilai ekonomi yang tinggi, dimana sifatnya yang keras dan memiliki optikal optis sehingga banyak dipakai dalam berbagai industri dan untuk bahan baku perhiasan. Diamond menjadi mineral alami terkeras yang pernah ada, tidak ada unsur alam yang dapat memotong diamond maupun menarik (merenggangkan) diamond.

Setiap karbon yang terdapat dalam diamond berikatan secara kovalen pada empat atom karbon yang lain dalam bentuk geometri tetrahedarl. Dan tetrahedarl ini membentuk 6 cincin karbon seperti sikloheksana dalam bentuk konformasi “kursi” sehingga hal ini mengakibatkan tidak adanya sudut ikatan yang mengalami ketegangan. Jalinan struktur kovalen yang stabil inilah membuat sifat diamond menjadi keras.

Panjang ikatan tunggal pada diamond adalah 0,154 nm. Dengan struktur kristal kubus perbusat muka dan densitasnya sekitar 3,51 g/cm3. Diamond yang murni memiliki indeks refraktori sebesar 2,465 pada 397 nm, 2.427 at 527 nm, 2.417 at 589 nm, 2.408 at 670 nm, and 2.402 at 763 nm.

Grafit

Grafit merupakan alotrop karbon. Tidak seperti diamond grafit bersifat konduktor sehingga dapat dipakai untuk elektroda dalam proses elektrolisis. Sifat daya hantar ini disebabkan grafit memiliki elektron dalam orbital pi yang terdelokalisasi dibawah dan diatas bidang karbon.Ikatan yang terdapat dalam grafit adalah sp2 dengan bentuk datar/plane dengan sudut 120 derajat. Elektron ini dapat bergerak bebas sejauh dalam lapisan karbon.

Grafit lebih reaktif dibandingkan dengan karbon, disebabkan reaktan dapat menetrasi diantara lapisan heksagonal grafit. Tidak bereaksi dengan asam encer atau basa dan dapat dioksidasi oleh asam kromat menjadi CO2.

Grafit tidak mencair akan tetapi mengalami sublimasi pada suhu 3500 C. Kristal grafit memiliki dua bentuk yaitu alfa-grafit dengan bentuk heksagonal dan beta grafit dengan bentuk rombohedral.

Grafena

Grafena merupakan lapisan tunggal dari grafit dengan ikatan karbon sp2 membentuk susunan seperti sarang lebah (monolayer grafit). Ikatan karbon-karbon memiliki panjang 0,142 nm. Grafena merupakan struktur dasar dari grafit, karbon nano, dan fuleren, dan dapat didiskripsikan sebagai lapisan molekul aromatic.



Karbon Amorfos

Karbon amorfos atau disebut sebagai karbon reaktif, merupakan alotop karbon dimana tidak memiliki struktur kristalin. Karbon amorfos biasa disingkat sebagai aC untuk karbon amorfos yang biasa, aC:H untuk karbon amorfos yang terhidrogenasi, dan ta-C untuk tetrahedral karbon amorfos (seperti diamond). Dalam bidang mineralogy, karbon amorfos biasa digunakan untuk istilah coal dan jenis karbon yang tak murni selain grafit dan diamond.


Fuleren

Fuleren merupakan molekul yang keseluruhannya dibangun oleh atom karbon dalam bentuk hollow, bulatan (sphere), ellipsoidal, atau tube. Fuleren yang berbentuk spherical disebut buckyballs, dan yang berbentuk silinder disebut sebagai karbon nanotube atau buckytubes. Fuleren memiliki struktur seperti grafit akan tetapi hanya dibangun dari grafena yang saling berhubungan satu sama lain. Penemuan fuleren menjadikan alotrop karbon semakin bervariasi dan menjadi subyek penelitan yang penting untuk elektronik, ilmu bahan, dan nanoteknoligi.



Kereaktifan Kimia Karbon

Pada suhu yang tinggi karbon bereaksi dengan oksigen membentuk CO dan CO2, dimana karbon juga dapat mereduksi senyawaan oksida logam menjadi logamnya. Reaksi ini dipakai untuk mengurangai dan mengontrol kandungan karbon dalam industri baja.

Fe3O4 + 4 C(s) ? 3 Fe(s) + 4 CO(g)

Dengan unsur belerang karbon bereaksi membentuk sulfide, dan bereaksi dengan uap air membentuk CO dan gas H2.

C(s) + H2O(g) ? CO(g) + H2(g).

Karbon juga bereaksi dengan unsur logam pada temperature tinggi untuk membentuk logam karbida seperti besi karbida, tungsten karbida yang dipakai dalam peralatan pemotong.

Isotop Karbon


Karbon memiliki dua isotop yang stabil yaitu 12C dengan kelimpahan 98,93% dan 13C dengan kelimpahan 1,07%. IUPAC telah menggunakan isotop 12C untuk menentukan berat atom unsur dalam sistem periodic. Isotop 14C terdapat dialam dan bersifat sebagai radioaktif dengan kelimpahan hanya sampai 0.0000000001%, terdapat sekitar 15 isotop karbon dan yang memiliki waktu paruh terpendek adalah 8C dengan waktu paruh 1.98739×10?21 s. Berapa isotop karbon ditunjukkan dalam tabel.


Manfaat Karbon

Karbon menjadi unsur yang memiliki banyak manfaat didunia ini. Berbagai macam aplikasinya baik dalam bentuk senyawaan maupun dalam bentuk unsur memiliki banyak manfaat. Untuk karbon dalam bentuk senyawaan adalah sebagai sumber makanan untuk kelangsungan makhluk hidup di bumi, kita tahu bahwa berbagai mcam makanan yang kita konsumsi adalah tersusun atas karbon. Hidrokarbon yang merupakan senyawaan karbon dan hydrogen dipakai untuk bahan bakar, petroleum dipakai untuk produksi gasoline dan kerosin. Celulosa merupakan polimer yang mengandung karbon dalam bentuk katun, wool, linen, dan sutra dipakai sebagai bahan pakaian. Plastik merupakan sintetik polimer karbon dengan banyak manfaat penggunaan.
» Karbon dapat membentuk alloy atau paduan logam dengan besi yang membentuk baja.
» Grafit digunakan dengan campuran tanah liat / clay untuk bahan dasar pensil untuk menulis atau menggambar. Grafit juga dipakai sebagai pelumas dan pewarna, elektroda dalam industri elektrolisis dan baterai, dan sebagai moderator neutron dalam reactor nuklir.
» Charcoal banyak dipakai untuk materi pengisi pensil ataupun untuk industri smelting besi, dan banyak dipakai sebagai bahan bakar untuk mendukung industri yang lain seperti pembangkit listrik tenaga uap.
» Diamond dipakai untuk perhiasan karena memiliki daya jual yang tinggi, dipakai sebagai alat penggiling, pemotong, dan alat untuk memoles untuk mesin atau batu-batuan.
» Karbon hitam dipakai sebagai pigmen dalam tinta, cat, dan dipakai juga sebagai pengisis dalam industri ban dan plastic.
» Charcoal aktif dipakai sebagai absorben dan adsorben yang banyak dipakai dalam pemurnian air, dan masker penutup hidung.
» Karbon dipakai sebagai agen pereduksi dalam berbagai reaksi kimia pada suhu yang sangat tiggi.
» Coke dipakai untuk mereduksi oksida besi menjadi besi dalam industri peleburan besi.
» Senyawa karbida dari silicon, tungsten, boron, dan titanium memiliki kekerasan yang tinggi dan dipakai dalam perlatan penggiling dan sebagai abrasive dalam berbagai macam industri.

Senyawaan Karbon

Karbon dapat membentuk berbagai macam senyawaan dan sebagaian besar dapat digolongkan menjadi 3 golongan senyawa karbon yaitu senyawa organic, senyawa anorganik, dan senyawa organometalik.

Senyawa Organometalik


Senyawa organometalik adalah ilmu yang mempelajari senyawaan kimia yang terdiri dari ikatan karbon dengan logam. Senyawa organometalik disebut juga sebagai organo-anorganik atau metalo-organik dan metalorganik. Contoh senyawa organometalik adalah nikel tetrakarbonil dan ferocena yang merupakan senyawa organic dengan logam transisi. Contoh lain adalah reagen Grignard contohnya MeMgI, Et2Mg, dan lithium dimethylcuprate (Li+[CuMe2]–).

Ikatan karbon dengan logam dalam senyawa organometalik umumnya bersifat sebagian ionic dan sebagian kovalen. Jika ikatan logam-C bersifat ion maka hal ini disebabkan karena logam yang dipakai sangat bersifat elektropositif seperti logam alkali, atau ada dalam bentuk karbanion. Sedangakn sifat ionic ikatan logam-C dalam logam transisi dan metalloid sangat rendah tergantung dari elektronegatifitas logam itu sendiri. Sifat ionic dan kovalen ikatan logam-C amat penting disebabkan ini memerankan peranan dalam kestabilan didalam larutan.

Organometalik memiliki peranan yang penting dalam sintesis kimia dan katalis. Sepeerti tetra etil lead (TEL) dipakai sebagai anti knocking dalam gasoline akan tetapi sekarang banyak diganti oleh ferosena atau methylcyclopentadienyl manganese tricarbonyl. Organometalik dari litium atau seng bersifat basa dan bersifat sebagai reduktor dan banyak dipakai dalam sintesis kimia organic. ButilLitium (gambar) adalah contoh organometalik yang banyak dipakai dalam sintesis. Organometalik terlibat dalam reaksi-reaksi penting sebagai berikut:
» Eleminasi dan adisi oksidatif
» Transmetliasi
» Karbometilasi
» Hidrometilasi
» Transfer electron
» Beta eleminasi hidrida
» Reaksi substitusi organometalik
» Siklometilasi
» Reaksi Migrasi-Pemasukan
» Aktivasi ikatan karbon-hidrogen.

Senyawa Anorganik Karbon

Terdapat banyak sekali berbagai macam senyawa karbon yang tidak tergolong dalam seyawa organic dan kumpulan senyawa ini digolongkan dalam senyawa anorganik. Terdapat banyak jenis oksida karbon (oksokarbon) dimana yang paling terkenal adalah CO dan CO2, beberapa senyawa oksida karbon yang tidak cukup terkenal adalah karbon suboksida C3O2 dan melitik anhidrida C12O9, terdapat juga oksida yang tidak stabil seperti dikarbon oksida C2O, oksalat anhidrida C2O4, dan karbon trioksida CO3.

Beberapa senyawa karbon dengan nonlogam adalah
» Karbon disulfide CS2 dan Karbonil Sulfida COS
» Beta karbon nitril (?-C3N4)
» Karbon tetraflourida CF4, karbon tetrabromida CBr4, karbon tetraklorida CCl4, dan karbon tetraiodida CI4
» Karbonil flourida COF2
» Karborana seperti H2C2B10H10

Terdapat beberapa oksoanion yaitu ion negative yang hanya mengandung karbon dan oksigen. Yang paling terkenal adalah oksalat C2O42- dan karbonat CO32-. Asam dari dua anion ini tidak stabil yaitu H2CO3 dan H2C2O4 yang dapat terprotonasi membentuk ion bikarbonat HCO3- da hydrogen oksalat HC2O4-. Beberapa anion oksoanion yang lain meluputi asetelindikarboksilat (O2C-C?C-CO22-), melitat C12O96-, skuarat C4O42- , dan rhodizonate(C6O62-).

Beberapa senyawa karbonat yang peting adalah Ag2CO3, BaCO3, CaCO3, CdCO3, Ce2(CO3)3, CoCO3, Cs2CO3, CuCO3, FeCO3, K2CO3, La2(CO3)3, Li2CO3,MgCO3, MnCO3, (NH4)2CO3, Na2CO3, NiCO3, PbCO3, SrCO3, dan ZnCO3.

Bikarbonat yang penting adalah include NH4HCO3, Ca(HCO3)3, KHCO3, dan NaHCO3.

Oksalat yang penting Ag2C2O4, BaC2O4, CaC2O4, Ce2(C2O4)3, K2C2O4, dan Na2C2O4.

Karbonils merupakan kompleks antara logam transisi dengan ligan karbonil. Logam karbonil adalah kompleks antara logam dengan molekul netral CO. Dimana membentuk ikatan kovalen. Senyawa karbonils antara lain Cr(CO)6, Co2(CO)8, Fe(CO)5, Mn2(CO)10, Mo(CO)6,Ni(CO)4, W(CO)6.

Senyawa dengan gugus CN disebut sebagai sianida, sianat, tiosianat, dan isosianat. Contoh senyawanya adalah NH4SCN, CaNCN, Co(SCN)2, CuCN, (HCNO)x NH2CN HCNO, (CN)2, BrCN, ClCN, HCN, KOCN, KCN, K3Fe(CN)6, K4Fe(CN)6, KSCN,Fe4(Fe(CN)6)3, AgCN, NaOCN, NaCN, Na3Fe(CN)5NO, NaSCN, (SCN)2.

Karbida merupakan merupakan kompleks karbon dengan unsur yang kurang bersifat elektronegatif dengan karbon dan yang paling umum adalah Al4C3 B4C, CaC2, Fe3C,HfC, SiC, TaC, TiC, dan WC.

Senyawa Organik

Senyawa organic merupakan istilah yang dipakai untuk menunjukkan senyawa yang terdiri dari karbon dan hydrogen, beberapa senyawa lain yang mungkin terdapat dala senyawa organic diantaranya nitrogen, fosfor, belerang, dan oksigen. Senyawa organic dapat dibedakan menjadi beberapa cara diantaranya senyawa organic alami dan senyawa organic sintesis. Senyawa organic juga dapat dibedakan atas ada tidaknya atom lain atau heteroatom, organometalik yaitu senyawa organic yang berikatan dengan logam, dan organofosfor yaitu yang juga berikatan dengan fosfor.

Senyawa Organik Alami

Menunjukkan senyawa organic yang berasal dari hewan atau tumbuhan. Biasa diekstrak dari bahan alaminya hal ini disebabkan untuk membuat artificial dari senyawa ini memiliki biaya produksi yang mahal. Sebagai contoh gula, beberapa alkaloid, dan terpenoid, antigen, karbohidrat, enzyme, hormone, lipid, asam lemak, neurotransmitter, protein, asam amino, vitamin, dan lemak.

Senyawa Organik Sintesis

Senyawa yang diperoleh dengan cara reaksi kimia dan dihubungkan dengan istilah sintetik. Bisa jadi senyawa sintetik ini adalah senyawa yang sudah diketemukan di dalam tumbuhan atau hewan atau yang tidak terdapat secara alami. Senyawa ini bisa berupa polimer dan plastic.

Senyawa organic meliputi golongan yang cukup besar dimana beberapa golonga tersebut adalah:
» Alkana
» Alkena
» Alkuna
» Senyawa aromatic
» Alkohol
» Ester
» Asam karboksilat
» Amida
» Eter
» Karbohidrat
» Lemak dan asam lemak
» Senyawa polifenol
» Senyawa karetenoid
» Dll

ILMU KIMIA BERKEMBANG 10 ABAD LEBIH DULU DI DUNIA ISLAM SEBELUM EROPA



Peradaban Islam di era keemasan menguasai beragam ilmu pengetahuan, salah satunya adalah kimia. Para sejarawan sains mengakui bahwa ilmu kimia merupakan anak kandung dari peradaban Islam.

”Ahli kimia Muslim adalah pendiri ilmu kimia,” tutur Will Durant dalam The Story of Civilization IV: The Age of Faith. Ilmuwan berkebangsaan Jerman di abad ke-18 M itu mengakui bahwa ilmu kimia hampir sepenuhnya diciptakan peradaban Islam.

“Dalam bidang ini (kimia), peradaban Yunani (seperti kita ketahui) hanya sebatas melahirkan hipotesis yang samar-samar,” ungkap Durant.
Para kimiawan Muslim di era kekhalifahan telah meletakan dasar-dasar kimia modern yang sangat bermanfaat bagi kehidupan umat manusia. Betapa tidak, para kimiawan Muslim telah berhasil menemukan sederet zat atau senyawa kimia yang sangat penting, sepertil asam klorida, asam nitrat, asam sitrat, asam asetat, alkohol, larutan aqua regia (dengan menggabungkan asam klorida dan asam nitrat) untuk melarutkan emas.

Selain itu, para ahli kimia Muslim juga telah memperkenalkan proses dasar sublimasi, penguapan, pencairan, kristalisasi, pembuatan kapur, penyulingan, pencelupan, pemurnian, sematan (fixation), amalgamasi, dan oksidasi-reduksi. Semua penemuan itu tentunya didukung dengan peralatan
laboratorium yang canggih, pada zamannya.
Para ahli kimia Muslim pada golden age juga telah mewariskan sederet peralatan laboratorium yang hingga kini masih tetap digunakan. Saintis Muslim seperti; Jabir Ibnu Hayyan alias Geber, al-Khazini, al-Biruni, Ibnu Sina, dan Muhammad ibnu Zakariya al-Razi telah menciptakan beragam
peralatan laboratorium yang sangat penting bagi pengembangan ilmu kimia.
Sejumlah peralatan laboratorium yang diwariskan para ilmuwan Muslim itu antara lain, alembic, conical measure, hidrostatic balanca, teelyard, laboratory flask, pycnometer, refrigerated coil, refrigerated tubing, termometer, air termometer, peralatan untuk mengolah obat-obatan dan
peralatan untuk melelehkan zat-zat atau bahan-bahan kimia.

Alembic
Merupakan alat penyulingan yang terdiri dari dua tabung yang terhubung. Tabung kimia ini pertama kali ditemukan Jabir Ibnu Hayyan (721 M – 815 M). Sejarawan sains memperkirakan, Jabir menemukan alat iitu pada abad ke-8 M. “Ini merupakan alat penyulingan pertama,” papar Durant. Ensiklopedia Hutchinson, menyebut alembic sebagai alat penyulingan pertama yang
digunakan untuk memurnikan seluruh zat kimia.

Conical Measure (Tabung Ukur)
Marshall Clagett dalam karyanya The Science of Mechanics in the Middle Ages, mengatakan, conical measure merupakan peralatan laboratorium yang ditemukan Abu Raihan al-Biruni ( 973 M- 1048 M) pada abad ke- 11 M.

M Rozhanskaya and IS Levinova dalam tulisannya bertajuk Statics juga menyatakan bahwa conical measure pertama kali ditemukan al-Biruni.
Dalam Wikipedia dijelaskan bahwa conical measure adalah salah satu peralatan laboratorium yang terbuat dari bahan kaca berupa sebuah cangkir berbentuk kerucut dengan torehan di atasnya yang berfungsi untuk memudahkan penuangan cairan. Di bagian samping terdapat tanda-tanda ukuran untuk mengukur isi cairan.

Hydrostatic Balance dan Steelyard
Robert E Hall dalam karyanya berjudul Al-Khazini: Dictionary of Scientific Biography, mengungkapkan, bahwa hydrostatic balance (keseimbangan hidrostatis) dan Steelyard (timbangan gantung) ditemukan Al-Khazini yang memiliki nama lengkap Abd al-Rahman al-Khazini (1115 M –
1130 M) pada 1121 M.

Laboratory Flask
Menurut Robert E Hall Laboratory Flask atau Botol Laboratorium pertama kali diperkenalkan al-Biruni. Botol atau termos laboratorium itu biasanya terbuat dari kaca bening. Botol itu digunakan untuk menampung cairan yang akan digunakan atau diuji di laboratorium. Selain itu, alat ini juga digunakan untuk mengukur isi bahan kimia, mencampur, memanaskan, mendinginkan,
menghancurkan, mengendapkan, serta mendidihkan (dalam penyulingan) zat-zat kimia.
Pycnometer
Pycnometer merupakan peralatan laboratorium yang digunakan untuk mengukur berat jenis atau volume caiaran secara akurat. Alat ini juga ditemukan al-Biruni. Hingga kini, peralatan laboratorium yang diwariskan peradaban Islam itu masih digunakan.
Refrigerated coil and Refrigerated Tubing
Menurut Vicki Pitman dalam karyanya bertajuk Aromatherapy: A Practical Approach, Nelson Thornes, pada abad ke-11 M, Ibnu Sina telah menemukan refrigerated coil atau lingkaran pendingin yang berfungsi untuk, yang memadatkan uap wangi. Richard Myers, dalam bukunya The
Basics of Chemistry, Greenwood Publishing Group juga mengakui bahwa lingkaran atau tabung pendingin itu pertama kali diperkenalkan Ibnu Sina .
“Ini merupakan sebuah terobosan dalam teknologi penyulingan dan Ibnu Sina menggunakannya dalam proses penyulingan dengan uap air panas, yang membutuhkan tabung pendingin untuk memproduksi minyak esensial,” papar Marlene Ericksen dalam karyanya Healing with Aromatherapy.

Termometer
Robert Briffault dalam bukunya The Making of Humanity, menjelaskan bahwa termometer ditemukan oleh Ibn Sina (980 M – 1037 M) pada abad ke-11 M.. Termometer adalah sebuah alat untuk mengukur temperatur/suhu dengan berbagai jenis prinsip yang berbeda.
Peralatan untuk Pengolahan Obat-obatan
Georges C Anawati, dalam karyanya Arabic alchemy, mengungkapkan, al-Razi) merupakan penemu pertama peralatan untuk pengolahan obat-obatan. “Muhammad ibnu Zakariya Razi (Rhazes) adalah orang pertama yang menjelaskan peralatan untuk pengolahan obat-obatan,” tuturnya.

Peralatan untuk Melelehkan Bahan
Al-Razi dalam Secretum secretorumnya, menjelaskan beberapa peralatan yang dibuatnya untuk melelehkan zat kimia (li-tadhwib). Itulah beberapa peralatan laboratorium yang diwariskan para ilmuwan Muslim bagi pengembangan sains modern. Kontribusi ilmuwan Muslim sungguh begitu
besar bagi kemajuan peradaban manusia. Karya-karya yang mereka ciptakan mampu mengubah dunia. Tanpa kontribusi dan jasa mereka, barangkali dunia tak akan maju seperti sekarang ini. Berkat peralatan laboratorium itu, peradaban manusia mampu melakukan revolusi di bidang kimia, fisika dan farmasi.

Sang Penemu Peralatan Laboratorium
* Jabir Ibnu Hayyan
Jabir Ibnu Hayyan ditabalkan sebagai ”Bapak Kimia Modern”. Dalam bidang kimia, prestasi dan pencapaiannya terekam dengan baik lewat buku-buku yang ditulisnya. Tak kurang dari 200 buku berhasil ditulisnya.
Sebanyak 80 judul buku di antaranya mengupas hasil-hasil eksperimen kimia yang dilakukannya. Buku-buku itu sungguh amat berpengaruh hingga sekarang. Secara khusus, ia mendedikasikan sekitar 112 buku lainnya bagi Barmakid, sang guru, yang juga pembantu atau wazir Khalifah Harun
ar-Rasyid.
Buku-buku itu ditulis dalam bahasa Arab. Pada abad pertengahan, orang-orang Barat mulai menerjemahkan karya-karya Jabir itu ke dalam bahasa Latin, sehingga menjadi rujukan para ahli kimia di Eropa. Tak kurang dari 70 buku karya Jabir telah dialihbahasakan ke dalam bahasa Latin
pada abad pertengahan.
Salah satu yang terkenal adalah Kitab al-Zuhra yang diterjemakan menjadi Book of Venus, serta Kitab al-Ahjar yang dialihbahasakan menjadi Book of Stones.


* Al-Razi
Terlahir di Rayy, Provinsi Khurasan dekat Teheran tahun 864 M, al-Razi dikenal sebagai seorang dokter dan ahli kimia yang hebat. Sejatinya, ilmuwan Muslim yang dikenal Barat sebagai Rhazes itu bernama lengkap Abu Bakar Muhammad ibnu Zakariya. Al-Razi muda yang dikenal amat gemar
memainkan harpa sudah mulai jatuh hati pada ilmu kimia.
Ia menimba ilmu dari Ali ibnu Rabban al-Tabari (808 M) — seorang dokter sekaligus filosof. Sang gurulah yang telah melecut minat Rhazes untuk menekuni dua bidang ilmu yakni kedokteran dan filsafat. Hingga kelak, dia menjadi seorang filosof, dokter dan ahli kimia yang amat populer di
zamannya.
Al-Razi merupakan ilmuwan yang sangat produktif. Tak kurang dari 200 buku berhasil dituliskannya. Kitabnya yang paling terkenal dan fenomenal adalah Kitab Al Mansur, Kitab Al Hawi, Kitab Al Asrar atau ‘Kitab Rahasia’.

Hujan Asam




Dalam kehidupan sehari-hari, tentunya kita mengenal hujan yang memang hampir kita jumpai setiap hari. Hujan secara umum bersifat asam (pH sedikit di bawah 6) karena karbondioksida (CO2) di udara yang larut dengan air hujan memiliki bentuk sebagai asam lemah (H2CO3). Jenis asam dalam hujan yang biasa terjadi ini sangat bermanfaat karena membantu melarutkan mineral dalam tanah yang dibutuhkan oleh tumbuhan dan binatang. Sedangkan, hujan asam yang kita kenal dapat diartikan sebagai segala macam hujan dengan pH di bawah 5,6. Istilah Hujan asam pertama kali diperkenalkan oleh Angus Smith ketika ia menulis tentang polusi industri di Inggris (Anonim, 2001). Tetapi istilah hujan asam tidaklah tepat, yang benar adalah deposisi asam. Deposisi asam ada dua jenis, yaitu deposisi kering dan deposisi basah. Deposisi kering ialah peristiwa kerkenanya benda dan mahluk hidup oleh asam yang ada dalam udara. Ini dapat terjadi pada daerah perkotaan karena pencemaran udara akibat kendaraan maupun asap pabrik. Selain itu deposisi kering juga dapat terjadi di daerah perbukitan yang terkena angin yang membawa udara yang mengandung asam. Biasanya deposisi jenis ini terjadi dekat dari sumber pencemaran. Deposisi basah ialah turunnya asam dalam bentuk hujan.

Secara alami hujan asam dapat terjadi akibat semburan dari gunung berapi dan dari proses biologis di tanah, rawa, dan laut. Akan tetapi, mayoritas hujan asam disebabkan oleh aktivitas manusia seperti industri, pembangkit tenaga listrik, kendaraan bermotor dan pabrik pengolahan pertanian (terutama amonia). Gas-gas yang dihasilkan oleh proses ini dapat terbawa angin hingga ratusan kilometer di atmosfer sebelum berubah menjadi asam dan terdeposit ke tanah.




Pada dasarnya, Hujan asam disebabkan oleh belerang (sulfur) yang merupakan pengotor dalam bahan bakar fosil serta nitrogen di udara yang bereaksi dengan oksigen membentuk sulfur dioksida dan nitrogen oksida. Sekitar 50% SO2 yang ada di atmosfer diseluruh dunia terjadi secara alami, misalnya dari letusan gunung berapi maupun kebakaran hutan secara alami. Sedangkan 50% lainnya berasal dari kegiatan manusia, misalnya akibat pembakaran Bahan Bakar Fosil (BBF), peleburan logam dan pembangkit listrik. Minyak bumi mengadung belerang antara 0,1% sampai 3% dan batubara 0,4% sampai 5%. Sedangkan zat nitrogen oxides 50% terdapat di atmosfer secara alami, dan 50% lagi juga terbentuk akibat kegiatan manusia, terutama akibat pembakaran BBF. Pembakaran BBF mengoksidasi 5-50% nitrogen dalam batubara , 40-50% nitrogen dalam minyak berat dan 100% nitrogen dalam mkinyak ringan dan gas. Makin tinggi suhu pembakaran, makin banyak Nitrogen oxides yang terbentuk. Senyawa SO2 dan NOx ini akan terkumpul di udara dan akan melakukan perjalanan ribuan kilometer di atsmosfer dan di saat mereka bercampur dengan uap air akan membentuk zat asam sulfat dan nitrat yang mudah larut. Saat air hujan turun, zat-zat tersebut ikut larut dan jatuh ke bumi.



Terjadinya hujan asam harus diwaspadai karena dampak yang ditimbulkan bersifat global dan dapat menggangu keseimbangan ekosistem. Hujan asam memiliki dampak tidak hanya pada lingkungan biotik, namun juga pada lingkungan abiotik, antara lain :




Danau

Kelebihan zat asam pada danau akan mengakibatkan sedikitnya species yang bertahan. Jenis Plankton dan invertebrate merupakan mahkluk yang paling pertama mati akibat pengaruh pengasaman. Apa yang terjadi jika didanau memiliki pH dibawah 5, lebih dari 75 % dari spesies ikan akan hilang (Anonim, 2002). Ini disebabkan oleh pengaruh rantai makanan, yang secara signifikan berdampak pada keberlangsungan suatu ekosistem. Tidak semua danau yang terkena hujan asam akan menjadi pengasaman, dimana telah ditemukan jenis batuan dan tanah yang dapat membantu menetralkan keasaman.



Tumbuhan dan Hewan

Hujan asam yang larut bersama nutrisi didalam tanah akan menyapu kandungan tersebut sebelum pohon-pohon dapat menggunakannya untuk tumbuh. Serta akan melepaskan zat kimia beracun seperti aluminium, yang akan bercampur didalam nutrisi. Sehingga apabila nutrisi ini dimakan oleh tumbuhan akan menghambat pertumbuhan dan mempercepat daun berguguran, selebihnya pohon-pohon akan terserang penyakit, kekeringan dan mati.


Sebenarnya, ada cara yang sangat ampuh untuk mengurangi hujan asam, yakni dengan pengurangan penggunaan minyak bumi (Bahan Bakar Fosil), namun, karena sampai sekarang manusia masih tergantung pada BBF tersebut, maka cara tersebut tidaklah efektif bagi masyarakat yang masih butuh BBF. Oleh sebab itu, Di Amerika Serikat, banyak pembangkit tenaga listrik tenaga batu bara menggunakan Flue gas desulfurization (FGD) untuk menghilangkan gas yang mengandung belerang dari cerobong mereka. Sebagai contoh FGD adalah wet scrubber yang umum digunakan di Amerika Serikat dan negara-negara lainnya.Wet scrubber pada dasarnya adalah tower yang dilengkapi dengan kipas yang mengambil gas asap dari cerobong ke tower tersebut. Kapur atau batu kapur dalam bentuk bubur juga diinjeksikan ke dalam tower sehingga bercampur dengan gas cerobong serta bereaksi dengan sulfur dioksida yang ada, Kalsium karbonat dalam batu kapur menghasilkan kalsium sulfat ber pH netral yang secara fisik dapat dikeluarkan dari scrubber. Oleh karena itu, scrubber mengubah polusi menjadi Kalsium Sulfat.

Ciri-CIRI REAKSI KIMIA

1. Terjadi Perubahan Warna

Pada reaksi kimia, reaktan diubah menjadi produk. Perubahan yang terjadi dapat disebabkan adanya pemutusan ikatan-ikatan antaratom reaktan dan pembentukan ikatan-ikatan bru yang membentuk produk. Untuk memutuskan ikatan diperlukan energi. Untuk membentuk ikatan yang baru, dilepaskan sejumlah energi. Jadi, pada reaksi kimia terjadi perubahan energi.

Reaksi kimia yang menghasilkan energi dalam bentuk panas disebut dengan reaksi eksotermis. Reaksi yang menyerap energi panas disebut dengan reaksi endotermis.

Contoh: Api dapat menghangatkan tubuh yang kedinginan dan ketika bernafas panas yang ada dalam tubuh akibat berolahraga dikeluarkan sehingga tubuh menjadi dingin.

percobaan

2. Terjadi Perubahan Suhu

Pada reaksi kimia, reaktan diubah menjadi produk. Perubahan yang terjadi dapat disebabkan adanya pemutusan ikatan-ikatan antaratom pereaksi dan pembentukan ikatan-ikatan baru yang membentuk produk. Untuk memutuskan ikatan diperlukan energi.

Reaksi kimia yang menghasilkan energi dalam bentuk panas disebut dengan reaksi eksotermis, sedangkan reaksi yang menyerap energi panas disebut reaksi endotermis.

Reaksi kimia terjadi pada suatu ruang yang kita sebut dbngan sistem, tempat di luar sistem disebut dengan lingkungan.

Pada reaksi eksotermis, terjadi perpindahan energi panas dari sisitem ke lingkungan.

Pada reaksi endotermis terjadi perpindahan energi panas dari lingkungan ke sistem.

percobaan

3. Terjadi Pembentukan Endapan

Ketika mereaksikan dua larutan dalam sebuah tabung reaksi, kadang-kadang terbentuk suatu sneyawa yang tidak larut, berbentuk padat, dan terpisah dari larutannya. Padatan itu disebut dengan endapan (presipitat)

percobaan

4. Terjadi Pembentukan Gas

Secara sederhana, dalam reaksi kimia adanya gas yang terbentuk ditunjukkan dengan adanya gelembung-gelembung dalam larutan yang direaksikan. Adanya gas dapat diketahui dari baunya yang khas, seperti asam sulfida (H2S) dan amonia (NH3) yang berbau busuk.

KIMIA YANG MENYENANGKAN

STOIKIOMETRI adalah cabang ilmu kimia yang mempelajari hubungan kuantitatif dari komposisi zat-zat kimia dan reaksi-reaksinya.1.
HUKUM KEKEKALAN MASSA = HUKUM LAVOISIER
"Massa zat-zat sebelum dan sesudah reaksi adalah tetap".

Contoh:
hidrogen + oksigen ® hidrogen oksida
(4g) (32g) (36g)

2.
HUKUM PERBANDINGAN TETAP = HUKUM PROUST
"Perbandingan massa unsur-unsur dalam tiap-tiap senyawa adalah tetap"

Contoh:
a. Pada senyawa NH3 : massa N : massa H
= 1 Ar . N : 3 Ar . H
= 1 (14) : 3 (1) = 14 : 3
b. Pada senyawa SO3 : massa S : massa 0
= 1 Ar . S : 3 Ar . O
= 1 (32) : 3 (16) = 32 : 48 = 2 : 3

Keuntungan dari hukum Proust:
bila diketahui massa suatu senyawa atau massa salah satu unsur yang membentuk senyawa tersebut make massa unsur lainnya dapat diketahui.

Contoh:
Berapa kadar C dalam 50 gram CaCO3 ? (Ar: C = 12; 0 = 16; Ca=40)
Massa C = (Ar C / Mr CaCO3) x massa CaCO3
= 12/100 x 50 gram = 6 gram
massa C
Kadar C = massa C / massa CaCO3 x 100%
= 6/50 x 100 % = 12%

3.
HUKUM PERBANDINGAN BERGANDA = HUKUM DALTON
"Bila dua buah unsur dapat membentuk dua atau lebih senyawa untuk massa salah satu unsur yang sama banyaknya maka perbandingan massa unsur kedua akan berbanding sebagai bilangan bulat dan sederhana".

Contoh:

Bila unsur Nitrogen den oksigen disenyawakan dapat terbentuk,
NO dimana massa N : 0 = 14 : 16 = 7 : 8
NO2 dimana massa N : 0 = 14 : 32 = 7 : 16

Untuk massa Nitrogen yang same banyaknya maka perbandingan massa Oksigen pada senyawa NO : NO2 = 8 :16 = 1 : 2

4.
HUKUM-HUKUM GAS
Untuk gas ideal berlaku persamaan : PV = nRT

dimana:
P = tekanan gas (atmosfir)
V = volume gas (liter)
n = mol gas
R = tetapan gas universal = 0.082 lt.atm/mol Kelvin
T = suhu mutlak (Kelvin)

Perubahan-perubahan dari P, V dan T dari keadaan 1 ke keadaan 2 dengan kondisi-kondisi tertentu dicerminkan dengan hukum-hukum berikut:
A.
HUKUM BOYLE
Hukum ini diturunkan dari persamaan keadaan gas ideal dengan
n1 = n2 dan T1 = T2 ; sehingga diperoleh : P1 V1 = P2 V2

Contoh:
Berapa tekanan dari 0 5 mol O2 dengan volume 10 liter jika pada temperatur tersebut 0.5 mol NH3 mempunyai volume 5 liter den tekanan 2 atmosfir ?

Jawab:
P1 V1 = P2 V2
2.5 = P2 . 10 ® P2 = 1 atmosfir

B.
HUKUM GAY-LUSSAC
"Volume gas-gas yang bereaksi den volume gas-gas hasil reaksi bile diukur pada suhu dan tekanan yang sama, akan berbanding sebagai bilangan bulat den sederhana".

Jadi untuk: P1 = P2 dan T1 = T2 berlaku : V1 / V2 = n1 / n2

Contoh:
Hitunglah massa dari 10 liter gas nitrogen (N2) jika pada kondisi tersebut 1 liter gas hidrogen (H2) massanya 0.1 g.
Diketahui: Ar untuk H = 1 dan N = 14

Jawab:

V1/V2 = n1/n2 ® 10/1 = (x/28) / (0.1/2) ® x = 14 gram

Jadi massa gas nitrogen = 14 gram.

C.
HUKUM BOYLE-GAY LUSSAC
Hukum ini merupakan perluasan hukum terdahulu den diturukan dengan keadaan harga n = n2 sehingga diperoleh persamaan:

P1 . V1 / T1 = P2 . V2 / T2

D. HUKUM AVOGADRO
"Pada suhu dan tekanan yang sama, gas-gas yang volumenya sama mengandung jumlah mol yang sama. Dari pernyataan ini ditentukan bahwa pada keadaan STP (0o C 1 atm) 1 mol setiap gas volumenya 22.4 liter volume ini disebut sebagai volume molar gas.

Contoh:
Berapa volume 8.5 gram amoniak (NH3) pada suhu 27o C dan tekanan 1 atm ?
(Ar: H = 1 ; N = 14)

Jawab:
85 g amoniak = 17 mol = 0.5 mol

Volume amoniak (STP) = 0.5 x 22.4 = 11.2 liter

Berdasarkan persamaan Boyle-Gay Lussac:

P1 . V1 / T1 = P2 . V2 / T2
1 x 112.1 / 273 = 1 x V2 / (273 + 27) ® V2 = 12.31 liter

1. Massa Atom Relatif (Ar)
merupakan perbandingan antara massa 1 atom dengan 1/12 massa 1 atom karbon 12

2.
Massa Molekul Relatif (Mr)
merupakan perbandingan antara massa 1 molekul senyawa dengan 1/12 massa 1 atom karbon 12.
Massa molekul relatif (Mr) suatu senyawa merupakan penjumlahan dari massa atom unsur-unsur penyusunnya.

Contoh:

Jika Ar untuk X = 10 dan Y = 50 berapakah Mr senyawa X2Y4 ?

Jawab:

Mr X2Y4 = 2 x Ar . X + 4 x Ar . Y = (2 x 10) + (4 x 50) = 220

1 mol adalah satuan bilangan kimia yang jumlah atom-atomnya atau molekul-molekulnya sebesar bilangan Avogadro dan massanya = Mr senyawa itu.

Jika bilangan Avogadro = L maka :
L = 6.023 x 1023


1 mol atom = L buah atom, massanya = Ar atom tersebut.
1 mol molekul = L buah molekul massanya = Mr molekul tersehut.

Massa 1 mol zat disebut sebagai massa molar zat


Contoh:

Berapa molekul yang terdapat dalam 20 gram NaOH ?

Jawab:

Mr NaOH = 23 + 16 + 1 = 40

mol NaOH = massa / Mr = 20 / 40 = 0.5 mol

Banyaknya molekul NaOH = 0.5 L = 0.5 x 6.023 x 1023 = 3.01 x 1023 molekul.

PERSAMAAN REAKSI MEMPUNYAI SIFAT1.
Jenis unsur-unsur sebelum dan sesudah reaksi selalu sama

2. Jumlah masing-masing atom sebelum dan sesudah reaksi selalu sama
3. Perbandingan koefisien reaksi menyatakan perbandingan mol (khusus yang berwujud gas perbandingan koefisien juga menyatakan perbandingan volume asalkan suhu den tekanannya sama)



Contoh: Tentukanlah koefisien reaksi dari

HNO3 (aq) + H2S (g) ® NO (g) + S (s) + H2O (l)

Cara yang termudah untuk menentukan koefisien reaksinya adalah dengan memisalkan koefisiennya masing-masing a, b, c, d dan e sehingga:

a HNO3 + b H2S ® c NO + d S + e H2O

Berdasarkan reaksi di atas maka

atom N : a = c (sebelum dan sesudah reaksi)
atom O : 3a = c + e ® 3a = a + e ® e = 2a
atom H : a + 2b = 2e = 2(2a) = 4a ® 2b = 3a ® b = 3/2 a
atom S : b = d = 3/2 a

Maka agar terselesaikan kita ambil sembarang harga misalnya a = 2 berarti: b = d = 3, dan e = 4 sehingga persamaan reaksinya :

2 HNO3 + 3 H2S ® 2 NO + 3 S + 4 H2O

Hitungan kimia adalah cara-cara perhitungan yang berorientasi pada hukum-hukum dasar ilmu kimia.

Dalam hal ini akan diberikan bermacam-macam contoh soal hitungan kimia beserta pembahasanya.

Contoh-contoh soal :1.
Berapa persen kadar kalsium (Ca) dalam kalsium karbonat ? (Ar: C = 12 ; O= 16 ; Ca=40)

Jawab :

1 mol CaCO, mengandung 1 mol Ca + 1 mol C + 3 mol O
Mr CaCO3 = 40 + 12 + 48 = 100
Jadi kadar kalsium dalam CaCO3 = 40/100 x 100% = 40%


2.
Sebanyak 5.4 gram logam alumunium (Ar = 27) direaksikan dengan asam klorida encer berlebih sesuai reaksi :

2 Al (s) + 6 HCl (aq) ® 2 AlCl3 (aq) + 3 H2 (g)

Berapa gram aluminium klorida dan berapa liter gas hidrogen yang dihasilkan pada kondisi standar ?

Jawab:

Dari persamaan reaksi dapat dinyatakan
2 mol Al x 2 mol AlCl3 ® 3 mol H2
5.4 gram Al = 5.4/27 = 0.2 mol

Jadi:

AlCl3 yang terbentuk = 0.2 x Mr AlCl3 = 0.2 x 133.5 = 26.7 gram
Volume gas H2 yang dihasilkan (0o C, 1 atm) = 3/2 x 0.2 x 22.4 = 6.72 liter


3.
Suatu bijih besi mengandung 80% Fe2O3 (Ar: Fe=56; O=16). Oksida ini direduksi dengan gas CO sehingga dihasilkan besi.
Berapa ton bijih besi diperlukan untuk membuat 224 ton besi ?

Jawab:

1 mol Fe2O3 mengandung 2 mol Fe
maka : massa Fe2O3 = ( Mr Fe2O3/2 Ar Fe ) x massa Fe = (160/112) x 224 = 320 ton
Jadi bijih besi yang diperlukan = (100 / 80) x 320 ton = 400 ton


4.
Untuk menentukan air kristal tembaga sulfat 24.95 gram garam tersebut dipanaskan sampai semua air kristalnya menguap. Setelah pemanasan massa garam tersebut menjadi 15.95 gram. Berapa banyak air kristal yang terkandung dalam garam tersebut ?

Jawab :

misalkan rumus garamnya adalah CuSO4 . xH2O

CuSO4 . xH2O ® CuSO4 + xH2O

24.95 gram CuSO4 . xH2O = 159.5 + 18x mol

15.95 gram CuSO4 = 159.5 mol = 0.1 mol

menurut persamaan reaksi di atas dapat dinyatakan bahwa:
banyaknya mol CuS04 . xH2O = mol CuSO4; sehingga persamaannya

24.95/ (159.5 + 18x) = 0.1 ® x = 5

Jadi rumus garamnya adalah CuS04 . 5H2O




Rumus Empiris dan Rumus Molekul

Rumus empiris adalah rumus yang paling sederhana dari suatu senyawa.
Rumus ini hanya menyatakan perbandingan jumlah atom-atom yang terdapat dalam molekul.
Rumus empiris suatu senyawa dapat ditentukan apabila diketahui salah satu:
- massa dan Ar masing-masing unsurnya
- % massa dan Ar masing-masing unsurnya
- perbandingan massa dan Ar masing-masing unsurnya

Rumus molekul: bila rumus empirisnya sudah diketahui dan Mr juga diketahui maka rumus molekulnya dapat ditentukan.Contoh: Suatu senyawa C den H mengandung 6 gram C dan 1 gram H.
Tentukanlah rumus empiris dan rumus molekul senyawa tersebut bila diketahui Mr nya = 28 !
Jawab:
mol C : mol H = 6/12 : 1/1 = 1/2 : 1 = 1 : 2
Jadi rumus empirisnya: (CH2)n

Bila Mr senyawa tersebut = 28 maka: 12n + 2n = 28 ® 14n = 28 ® n = 2

Jadi rumus molekulnya : (CH2)2 = C2H4

Contoh: Untuk mengoksidasi 20 ml suatu hidrokarbon (CxHy) dalam keadaan gas diperlukan oksigen sebanyak 100 ml dan dihasilkan CO2 sebanyak 60 ml. Tentukan rumus molekul hidrokarbon tersebut !
Jawab:
Persamaan reaksi pembakaran hidrokarbon secara umum

CxHy (g) + (x + 1/4 y) O2 (g) ® x CO2 (g) + 1/2 y H2O (l)
Koefisien reaksi menunjukkan perbandingan mol zat-zat yang terlibat dalam reaksi.
Menurut Gay Lussac gas-gas pada p, t yang sama, jumlah mol berbanding lurus dengan volumenya

Maka:mol CxHy : mol O2 : mol CO2 = 1 : (x + 1/4y) : x
20 : 100 : 60 = 1 : (x + 1/4y) : x
1 : 5 : 3 = 1 : (x + 1/4y) : x


atau:

1 : 3 = 1 : x ® x = 3
1 : 5 = 1 : (x + 1/4y) ® y = 8
Jadi rumus hidrokarbon tersebut adalah : C3H8

a.
Reaksi Eksoterm

Pada reaksi eksoterm terjadi perpindahan kalor dari sistem ke lingkungan atau pada reaksi tersebut dikeluarkan panas.
Pada reaksi eksoterm harga DH = ( - )

Contoh : C(s) + O2(g) ® CO2(g) + 393.5 kJ ; DH = -393.5 kJ


b.
Reaksi Endoterm

Pada reaksi endoterm terjadi perpindahan kalor dari lingkungan ke sistem atau pada reaksi tersebut dibutuhkan panas.
Pada reaksi endoterm harga DH = ( + )

Contoh : CaCO3(s) ® CaO(s) + CO2(g) - 178.5 kJ ; DH = +178.5 kJ

Entalpi = H = Kalor reaksi pada tekanan tetap = Qp
Perubahan entalpi adalah perubahan energi yang menyertai peristiwa perubahan kimia pada tekanan tetap.a. Pemutusan ikatan membutuhkan energi (= endoterm)
Contoh: H2 ® 2H - a kJ ; DH= +akJ
b. Pembentukan ikatan memberikan energi (= eksoterm)
Contoh: 2H ® H2 + a kJ ; DH = -a kJ


Istilah yang digunakan pada perubahan entalpi :1.
Entalpi Pembentakan Standar ( DHf ):
DH untak membentuk 1 mol persenyawaan langsung dari unsur-unsurnya yang diukur pada 298 K dan tekanan 1 atm.

Contoh: H2(g) + 1/2 O2(g) ® H20 (l) ; DHf = -285.85 kJ
2.
Entalpi Penguraian:
DH dari penguraian 1 mol persenyawaan langsung menjadi unsur-unsurnya (= Kebalikan dari DH pembentukan).

Contoh: H2O (l) ® H2(g) + 1/2 O2(g) ; DH = +285.85 kJ
3.
Entalpi Pembakaran Standar ( DHc ):
DH untuk membakar 1 mol persenyawaan dengan O2 dari udara yang diukur pada 298 K dan tekanan 1 atm.

Contoh: CH4(g) + 2O2(g) ® CO2(g) + 2H2O(l) ; DHc = -802 kJ
4.
Entalpi Reaksi:
DH dari suatu persamaan reaksi di mana zat-zat yang terdapat dalam persamaan reaksi dinyatakan dalam satuan mol dan koefisien-koefisien persamaan reaksi bulat sederhana.

Contoh: 2Al + 3H2SO4 ® Al2(SO4)3 + 3H2 ; DH = -1468 kJ
5.
Entalpi Netralisasi:
DH yang dihasilkan (selalu eksoterm) pada reaksi penetralan asam atau basa.

Contoh: NaOH(aq) + HCl(aq) ® NaCl(aq) + H2O(l) ; DH = -890.4 kJ/mol
6.
Hukum Lavoisier-Laplace
"Jumlah kalor yang dilepaskan pada pembentukan 1 mol zat dari unsur-unsurya = jumlah kalor yang diperlukan untuk menguraikan zat tersebut menjadi unsur-unsur pembentuknya."
Artinya : Apabila reaksi dibalik maka tanda kalor yang terbentuk juga dibalik dari positif menjadi negatif atau sebaliknya

Contoh:
N2(g) + 3H2(g) ® 2NH3(g) ; DH = - 112 kJ
2NH3(g) ® N2(g) + 3H2(g) ; DH = + 112 kJ

PENENTUAN PERUBAHAN ENTALPI

Untuk menentukan perubahan entalpi pada suatu reaksi kimia biasanya digunakan alat seperti kalorimeter, termometer dan sebagainya yang mungkin lebih sensitif.

Perhitungan : DH reaksi = S DHfo produk - S DHfo reaktan



HUKUM HESS

"Jumlah panas yang dibutuhkan atau dilepaskan pada suatu reaksi kimia tidak tergantung pada jalannya reaksi tetapi ditentukan oleh keadaan awal dan akhir."

Contoh:C(s) + O2(g) ® CO2(g) ; DH = x kJ ® 1 tahap
C(s) + 1/2 02(g) ® CO(g) ; DH = y kJ ® 2 tahap
CO(g) + 1/2 O2(g) ® CO2(g) ; DH = z kJ
------------------------------------------------------------ +
C(s) + O2(g) ® CO2(g) ; DH = y + z kJ


Menurut Hukum Hess : x = y + z

Reaksi kimia merupakan proses pemutusan dan pembentukan ikatan. Proses ini selalu disertai perubahan energi. Energi yang dibutuhkan untuk memutuskan ikatan kimia, sehingga membentuk radikal-radikal bebas disebut energi ikatan. Untuk molekul kompleks, energi yang dibutuhkan untuk memecah molekul itu sehingga membentuk atom-atom bebas disebut energi atomisasi.

Harga energi atomisasi ini merupakan jumlah energi ikatan atom-atom dalam molekul tersebut. Untuk molekul kovalen yang terdiri dari dua atom seperti H2, 02, N2 atau HI yang mempunyai satu ikatan maka energi atomisasi sama dengan energi ikatan Energi atomisasi suatu senyawa dapat ditentukan dengan cara pertolongan entalpi pembentukan senyawa tersebut. Secara matematis hal tersebut dapat dijabarkan dengan persamaan :DH reaksi = S energi pemutusan ikatan - S energi pembentukan ikatan
= S energi ikatan di kiri - S energi ikatan di kanan


Contoh:

Diketahui :

energi ikatan

C - H = 414,5 kJ/Mol
C = C = 612,4 kJ/mol
C - C = 346,9 kJ/mol
H - H = 436,8 kJ/mol

Ditanya:

DH reaksi = C2H4(g) + H2(g) ® C2H6(g)


DH reaksi = Jumlah energi pemutusan ikatan - Jumlah energi pembentukan ikatan
= (4(C-H) + (C=C) + (H-H)) - (6(C-H) + (C-C))
= ((C=C) + (H-H)) - (2(C-H) + (C-C))
= (612.4 + 436.8) - (2 x 414.5 + 346.9)
= - 126,7 kJ

SISTEM DISPERSA.
Dispersi kasar
(suspensi) : partikel zat yang didispersikan berukuran lebih besar dari 100 nm.
B.
Dispersi koloid : partikel zat yang didispersikan berukuran antara 1 nm - 100 nm.
C. Dispersi molekuler
(larutan sejati) : partikel zat yang didispersikan berukuran lebih kecil dari 1 nm.


Sistem koloid pada hakekatnya terdiri atas dua fase, yaitu fase terdispersi dan medium pendispersi.
Zat yang didispersikan disebut fase terdispersi sedangkan medium yang digunakan untuk mendispersikan disebut medium pendispersi.



JENIS KOLOID

Sistem koloid digolongkan berdasarkan pada jenis fase terdispersi dan medium pendispersinya.

- koloid yang mengandung fase terdispersi padat disebut sol.
- koloid yang mengandung fase terdispersi cair disebut emulsi.
- koloid yang mengandung fase terdispersi gas disebut buih.

Sifat-sifat khas koloid meliputi :a.
Efek Tyndall
Efek Tyndall adalah efek penghamburan cahaya oleh partikel koloid.

b.
Gerak Brown
Gerak Brown adalah gerak acak, gerak tidak beraturan dari partikel koloid.



Koloid Fe(OH)3 bermuatan positif karena permukaannya menyerap ion H+

Koloid As2S3 bermuatan negatif karena permukaannya menyerap ion S2-


c.
Adsorbsi
Beberapa partikel koloid mempunyai sifat adsorbsi (penyerapan) terhadap partikel atau ion atau senyawa yang lain.
Penyerapan pada permukaan ini disebut adsorbsi (harus dibedakan dari absorbsi yang artinya penyerapan sampai ke bawah permukaan).
Contoh :
(i) Koloid Fe(OH)3 bermuatan positif karena permukaannya menyerap ion H+.
(ii) Koloid As2S3 bermuatan negatit karena permukaannya menyerap ion S2.

d.
Koagulasi
Koagulasi adalah penggumpalan partikel koloid dan membentuk endapan. Dengan terjadinya koagulasi, berarti zat terdispersi tidak lagi membentuk koloid.
Koagulasi dapat terjadi secara fisik seperti pemanasan, pendinginan dan pengadukan atau secara kimia seperti penambahan elektrolit, pencampuran koloid yang berbeda muatan.

e.
Koloid Liofil dan Koloid Liofob
Koloid ini terjadi pada sol yaitu fase terdispersinya padatan dan medium pendispersinya cairan. Koloid Liofil: sistem koloid yang affinitas fase terdispersinya besar terhadap medium pendispersinya.
Contoh: sol kanji, agar-agar, lem, cat
Koloid Liofob: sistem koloid yang affinitas fase terdispersinya kecil terhadap medium pendispersinya.
Contoh: sol belerang, sol emas.

ELEKTROFERESIS

Elektroferesis adalah peristiwa pergerakan partikel koloid yang bermuatan ke salah satu elektroda.
Elektrotoresis dapat digunakan untuk mendeteksi muatan partikel koloid. Jika partikel koloid berkumpul di elektroda positif berarti koloid bermuatan negatif dan jika partikel koloid berkumpul di elektroda negatif berarti koloid bermuatan positif.
Prinsip elektroforesis digunakan untuk membersihkan asap dalam suatu industri dengan alat Cottrell.



DIALISIS

Dialisis adalah proses pemurnian partikel koloid dari muatan-muatan yang menempel pada permukaannya.
Pada proses dialisis ini digunakan selaput semipermeabel.

A.
Cara Kondensasi

Cara kondensasi termasuk cara kimia. kondensasi
Prinsip : Partikel Molekular --------------> Partikel Koloid


Reaksi kimia untuk menghasilkan koloid meliputi :1. Reaksi Redoks
2 H2S(g) + SO2(aq) ® 3 S(s) + 2 H2O(l)

2. Reaksi Hidrolisis
FeCl3(aq) + 3 H2O(l) ® Fe(OH)3(s) + 3 HCl(aq)

3. Reaksi Substitusi
2 H3AsO3(aq) + 3 H2S(g) ® As2S3(s) + 6 H2O(l)

4.
Reaksi Penggaraman
Beberapa sol garam yang sukar larut seperti AgCl, AgBr, PbI2, BaSO4 dapat membentuk partikel koloid dengan pereaksi yang encer.
AgNO3(aq) (encer) + NaCl(aq) (encer) ® AgCl(s) + NaNO3(aq) (encer)



B.
Cara DispersiPrinsip : Partikel Besar ----------------> Partikel Koloid


Cara dispersi dapat dilakukan dengan cara mekanik atau cara kimia:1. Cara Mekanik
Cara ini dilakukan dari gumpalan partikel yang besar kemudian dihaluskan dengan cara penggerusan atau penggilingan.

2. Cara Busur Bredig
Cara ini digunakan untak membuat sol-sol logam.

3. Cara Peptisasi
Cara peptisasi adalah pembuatan koloid dari butir-butir kasar atau dari suatu endapan dengan bantuan suatu zat pemeptisasi (pemecah).
Contoh:
- Agar-agar dipeptisasi oleh air ; karet oleh bensin.
- Endapan NiS dipeptisasi oleh H2S ; endapan Al(OH)3 oleh AlCl3

Kecepatan reaksi adalah banyaknya mol/liter suatu zat yang dapat berubah menjadi zat lain dalam setiap satuan waktu.

Untuk reaksi: aA + bB ® mM + nN
maka kecepatan reaksinya adalah: 1 (dA) 1 d(B) 1 d(M) 1 d(N)
V = - ------- = - ------- = + -------- = + ----------
a dt b dt m dt n dt


dimana:- 1/a . d(A) /dt = rA = kecepatan reaksi zat A = pengurangan konsentrasi zat A per satuan wakru.
- 1/b . d(B) /dt = rB = kecepatan reaksi zat B = pengurangan konsentrasi zat B per satuan waktu.
- 1/m . d(M) /dt = rM = kecepatan reaksi zat M = penambahan konsentrasi zat M per satuan waktu.
- 1/n . d(N) /dt = rN = kecepatan reaksi zat N = penambahan konsentrasi zat N per satuan waktu.


Pada umumnya kecepatan reaksi akan besar bila konsentrasi pereaksi cukup besar. Dengan berkurangnya konsentrasi pereaksi sebagai akibat reaksi, maka akan berkurang pula kecepatannya.

Secara umum kecepatan reaksi dapat dirumuskan sebagai berikut:

V = k(A) x (B) y

dimana:

V = kecepatan reaksi
k = tetapan laju reaksi
x = orde reaksi terhadap zat A
y = orde reaksi terhadap zat B
(x + y) adalah orde reaksi keseluruhan
(A) dan (B) adalah konsentrasi zat pereaksi.

Orde reaksi adalah banyaknya faktor konsentrasi zat reaktan yang mempengaruhi kecepatan reaksi.
Penentuan orde reaksi tidak dapat diturunkan dari persamaan reaksi tetapi hanya dapat ditentukan berdasarkan percobaan.

Suatu reaksi yang diturunkan secara eksperimen dinyatakan dengan rumus kecepatan reaksi :

v = k (A) (B) 2

persamaan tersebut mengandung pengertian reaksi orde 1 terhadap zat A dan merupakan reaksi orde 2 terhadap zat B. Secara keselurahan reaksi tersebut adalah reaksi orde 3.

Contoh soal:

Dari reaksi 2NO(g) + Br2(g) ® 2NOBr(g)

dibuat percobaan dan diperoleh data sebagai berikut:No. (NO) mol/l (Br2) mol/l Kecepatan Reaksi
mol / 1 / detik
1. 0.1 0.1 12
2. 0.1 0.2 24
3. 0.1 0.3 36
4. 0.2 0.1 48
5. 0.3 0.1 108


Pertanyaan:

a. Tentukan orde reaksinya !
b. Tentukan harga k (tetapan laju reaksi) !

Jawab:a.
Pertama-tama kita misalkan rumus kecepatan reaksinya adalah V = k(NO)x(Br2)y : jadi kita harus mencari nilai x den y.
Untuk menentukan nilai x maka kita ambil data dimana konsentrasi terhadap Br2 tidak berubah, yaitu data (1) dan (4).
Dari data ini terlihat konsentrasi NO naik 2 kali sedangkan kecepatan reaksinya naik 4 kali maka :

2x = 4 ® x = 2 (reaksi orde 2 terhadap NO)

Untuk menentukan nilai y maka kita ambil data dimana konsentrasi terhadap NO tidak berubah yaitu data (1) dan (2). Dari data ini terlihat konsentrasi Br2 naik 2 kali, sedangkan kecepatan reaksinya naik 2 kali, maka :

2y = 2 ® y = 1 (reaksi orde 1 terhadap Br2)

Jadi rumus kecepatan reaksinya : V = k(NO)2(Br2) (reaksi orde 3)

b.
Untuk menentukan nilai k cukup kita ambil salah satu data percobaan saja misalnya data (1), maka:

V = k(NO)2(Br2)
12 = k(0.1)2(0.1)

k = 12 x 103 mol-212det-1

Teori tumbukan didasarkan atas teori kinetik gas yang mengamati tentang bagaimana suatu reaksi kimia dapat terjadi. Menurut teori tersebut kecepatan reaksi antara dua jenis molekul A dan B sama dengan jumiah tumbukan yang terjadi per satuan waktu antara kedua jenis molekul tersebut. Jumlah tumbukan yang terjadi persatuan waktu sebanding dengan konsentrasi A dan konsentrasi B. Jadi makin besar konsentrasi A dan konsentrasi B akan semakin besar pula jumlah tumbukan yang terjadi.

TEORI TUMBUKAN INI TERNYATA MEMILIKI BEBERAPA KELEMAHAN, ANTARA LAIN :-
tidak semua tumbukan menghasilkan reaksi sebab ada energi tertentu yang harus dilewati (disebut energi aktivasi = energi pengaktifan) untak dapat menghasilkan reaksi. Reaksi hanya akan terjadi bila energi tumbukannya lebih besar atau sama dengan energi pengaktifan (Ea).


- molekul yang lebih rumit struktur ruangnya menghasilkan tumbukan yang tidak sama jumlahnya dibandingkan dengan molekul yang sederhana struktur ruangnya.


Teori tumbukan di atas diperbaiki oleh tcori keadaan transisi atau teori laju reaksi absolut. Dalam teori ini diandaikan bahwa ada suatu keadaan yang harus dilewati oleh molekul-molekul yang bereaksi dalam tujuannya menuju ke keadaan akhir (produk). Keadaan tersebut dinamakan keadaan transisi. Mekanisme reaksi keadaan transisi dapat ditulis sebagai berikut:

A + B ® T* --> C + D

dimana:

- A dan B adalah molekul-molekul pereaksi
- T* adalah molekul dalam keadaan transisi
- C dan D adalah molekul-molekul hasil reaksi

Catatan :
energi pengaktifan (= energi aktivasi) adalah jumlah energi minimum yang dibutuhkan oleh molekul-molekul pereaksi agar dapat melangsungkan reaksi.

Dalam suatu reaksi kimia berlangsungnya suatu reaksi dari keadaan semula (awal) sampai keadaan akhir diperkirakan melalui beberapa tahap reaksi.

Contoh: 4 HBr(g) + O2(g) ® 2 H2O(g) + 2 Br2(g)

Dari persamaan reaksi di atas terlihat bahwa tiap 1 molekul O2 bereaksi dengan 4 molekul HBr. Suatu reaksi baru dapat berlangsung apabila ada tumbukan yang berhasil antara molekul-molekul yang bereaksi. Tumbukan sekaligus antara 4 molekul HBr dengan 1 molekul O2 kecil sekali kemungkinannya untuk berhasil. Tumbukan yang mungkin berhasil adalah tumbukan antara 2 molekul yaitu 1 molekul HBr dengan 1 molekul O2. Hal ini berarti reaksi di atas harus berlangsung dalam beberapa tahap dan diperkirakan tahap-tahapnya adalah :Tahap 1: HBr + O2 ® HOOBr (lambat)
Tahap 2: HBr + HOOBr ® 2HOBr (cepat)
Tahap 3: (HBr + HOBr ® H2O + Br2) x 2 (cepat)
------------------------------------------------------ +
4 HBr + O2 --> 2H2O + 2 Br2


Dari contoh di atas ternyata secara eksperimen kecepatan berlangsungnya reaksi tersebut ditentukan oleh kecepatan reaksi pembentukan HOOBr yaitu reaksi yang berlangsungnya paling lambat.

Rangkaian tahap-tahap reaksi dalam suatu reaksi disebut "mekanisme reaksi" dan kecepatan berlangsungnya reaksi keselurahan ditentukan oleh reaksi yang paling lambat dalam mekanisme reaksi. Oleh karena itu, tahap ini disebut tahap penentu kecepatan reaksi.

Beberapa faktor yang mempengaruhi kecepatan reaksi antara lain konsentrasi, sifat zat yang bereaksi, suhu dan katalisator.

A. KONSENTRASI

Dari berbagai percobaan menunjukkan bahwa makin besar konsentrasi zat-zat yang bereaksi makin cepat reaksinya berlangsung. Makin besar konsentrasi makin banyak zat-zat yang bereaksi sehingga makinbesar kemungkinan terjadinya tumbukan dengan demikian makin besar pula kemungkinan terjadinya reaksi.



B. SIFAT ZAT YANG BEREAKSI

Sifat mudah sukarnya suatu zat bereaksi akan menentukan kecepatan berlangsungnya reaksi.

Secara umum dinyatakan bahwa:-
Reaksi antara senyawa ion umumnya berlangsung cepat.
Hal ini disebabkan oleh adanya gaya tarik menarik antara ion-ion yang muatannya berlawanan.

Contoh: Ca2+(aq) + CO32+(aq) ® CaCO3(s)
Reaksi ini berlangsung dengan cepat.


- Reaksi antara senyawa kovalen umumnya berlangsung lambat.
Hal ini disebabkan karena untuk berlangsungnya reaksi tersebut dibutuhkan energi untuk memutuskan ikatan-ikatan kovalen yang terdapat dalam molekul zat yang bereaksi.

Contoh: CH4(g) + Cl2(g) ® CH3Cl(g) + HCl(g)
Reaksi ini berjalan lambat reaksinya dapat dipercepat apabila diberi energi misalnya cahaya matahari.




C. SUHU

Pada umumnya reaksi akan berlangsung lebih cepat bila suhu dinaikkan. Dengan menaikkan suhu maka energi kinetik molekul-molekul zat yang bereaksi akan bertambah sehingga akan lebih banyak molekul yang memiliki energi sama atau lebih besar dari Ea. Dengan demikian lebih banyak molekul yang dapat mencapai keadaan transisi atau dengan kata lain kecepatan reaksi menjadi lebih besar. Secara matematis hubungan antara nilai tetapan laju reaksi (k) terhadap suhu dinyatakan oleh formulasi ARRHENIUS:
k = A . e-E/RT


dimana:

k : tetapan laju reaksi
A : tetapan Arrhenius yang harganya khas untuk setiap reaksi
E : energi pengaktifan
R : tetapan gas universal = 0.0821.atm/moloK = 8.314 joule/moloK
T : suhu reaksi (oK)



D. KATALISATOR

Katalisator adalah zat yang ditambahkan ke dalam suatu reaksi dengan maksud memperbesar kecepatan reaksi. Katalis terkadang ikut terlibat dalam reaksi tetapi tidak mengalami perubahan kimiawi yang permanen, dengan kata lain pada akhir reaksi katalis akan dijumpai kembali dalam bentuk dan jumlah yang sama seperti sebelum reaksi.

Fungsi katalis adalah memperbesar kecepatan reaksinya (mempercepat reaksi) dengan jalan memperkecil energi pengaktifan suatu reaksi dan dibentuknya tahap-tahap reaksi yang baru. Dengan menurunnya energi pengaktifan maka pada suhu yang sama reaksi dapat berlangsung lebih cepat.

Reaksi yang dapat berlangsung dalam dua arah disebut reaksi dapat balik. Apabila dalam suatu reaksi kimia, kecepatan reaksi ke kanan sama dengan kecepatan reaksi ke kiri maka, reaksi dikatakan dalam keadaan setimbang. Secara umum reaksi kesetimbangan dapat dinyatakan sebagai:
A + B ® C + D




ADA DUA MACAM SISTEM KESETIMBANGAN, YAITU :1. Kesetimbangan dalam sistem homogen a. Kesetimbangan dalam sistem gas-gas
Contoh: 2SO2(g) + O2(g) « 2SO3(g)

b.
Kesetimbangan dalam sistem larutan-larutan
Contoh: NH4OH(aq) « NH4+(aq) + OH- (aq)



2. Kesetimbangan dalam sistem heterogen a. Kesetimbangan dalam sistem padat gas
Contoh: CaCO3(s) « CaO(s) + CO2(g)

b. Kesetimbangan sistem padat larutan
Contoh: BaSO4(s) « Ba2+(aq) + SO42- (aq)

c. Kesetimbangan dalam sistem larutan padat gas
Contoh: Ca(HCO3)2(aq) « CaCO3(s) + H2O(l) + CO2(g)

Hukum Guldberg dan Wange: Dalam keadaan kesetimbangan pada suhu tetap, maka hasil kali konsentrasi zat-zat hasil reaksi dibagi dengan hasil kali konsentrasi pereaksi yang sisa dimana masing-masing konsentrasi itu dipangkatkan dengan koefisien reaksinya adalah tetap.


Pernyataan tersebut juga dikenal sebagai hukum kesetimbangan.
Untuk reaksi kesetimbangan: a A + b B « c C + d D maka:
Kc = (C)c x (D)d / (A)a x (B)b



Kc adalah konstanta kesetimbangan yang harganya tetap selama suhu tetap.

BEBERAPA HAL YANG HARUS DIPERHATIKAN-
Jika zat-zat terdapat dalam kesetimbangan berbentuk padat dan gas yang dimasukkan dalam, persamaan kesetimbangan hanya zat-zat yang berbentuk gas saja sebab konsentrasi zat padat adalah tetap den nilainya telah terhitung dalam harga Kc itu.

Contoh: C(s) + CO2(g) « 2CO(g)
Kc = (CO)2 / (CO2)

-
Jika kesetimbangan antara zat padat dan larutan yang dimasukkan dalam perhitungan Kc hanya konsentrasi zat-zat yang larut saja.

Contoh: Zn(s) + Cu2+(aq) « Zn2+(aq) + Cu(s)
Kc = (Zn2+) / (CO2+)

-
Untuk kesetimbangan antara zat-zat dalam larutan jika pelarutnya tergolong salah satu reaktan atau hasil reaksinya maka konsentrasi dari pelarut itu tidak dimasukkan dalam perhitungan Kc.

Contoh: CH3COO-(aq) + H2O(l) « CH3COOH(aq) + OH-(aq)
Kc = (CH3COOH) x (OH-) / (CH3COO-)




Contoh soal:

1. Satu mol AB direaksikan dengan satu mol CD menurut persamaan reaksi:

AB(g) + CD(g) « AD(g) + BC(g)

Setelah kesetimbangan tercapai ternyata 3/4 mol senyawa CD berubah menjadi AD dan BC. Kalau volume ruangan 1 liter, tentukan tetapan kesetimbangan untuk reaksi ini !

Jawab:

Perhatikan reaksi kesetimbangan di atas jika ternyata CD berubah (bereaksi) sebanyak 3/4 mol maka AB yang bereaksi juga 3/4 mol (karena koefsiennya sama).
Dalam keadaan kesetimbangan:

(AD) = (BC) = 3/4 mol/l
(AB) sisa = (CD) sisa = 1 - 3/4 = 1/4 n mol/l

Kc = [(AD) x (BC)]/[(AB) x (CD)] = [(3/4) x (3/4)]/[(1/4) x (1/4)] = 9

2. Jika tetapan kesetimbangan untuk reaksi:

A(g) + 2B(g) « 4C(g)

sama dengan 0.25, maka berapakah besarnya tetapan kesetimbangan bagi reaksi:
2C(g) « 1/2A(g) + B(g)

Jawab:

- Untuk reaksi pertama: K1 = (C)4/[(A) x (B)2] = 0.25
- Untuk reaksi kedua : K2 = [(A)1/2 x (B)]/(C)2
- Hubungan antara K1 dan K2 dapat dinyatakan sebagai:
K1 = 1 / (K2)2 ® K2 = 2

Azas Le Chatelier menyatakan: Bila pada sistem kesetimbangan diadakan aksi, maka sistem akan mengadakan reaksi sedemikian rupa sehingga pengaruh aksi itu menjadi sekecil-kecilnya.

Perubahan dari keadaan kesetimbangan semula ke keadaan kesetimbangan yang baru akibat adanya aksi atau pengaruh dari luar itu dikenal dengan pergeseran kesetimbangan.

Bagi reaksi:
A + B « C + D




KEMUNGKINAN TERJADINYA PERGESERAN1. Dari kiri ke kanan, berarti A bereaksi dengan B memhentuk C dan D, sehingga jumlah mol A dan Bherkurang, sedangkan C dan D bertambah.

2. Dari kanan ke kiri, berarti C dan D bereaksi membentuk A dan B. sehingga jumlah mol C dan Dherkurang, sedangkan A dan B bertambah.




FAKTOR-FAKTOR YANG DAPAT MENGGESER LETAK KESETIMBANGAN ADALAH :

a. Perubahan konsentrasi salah satu zat
b. Perubahan volume atau tekanan
c. Perubahan suhu

A. PERUBAHAN KONSENTRASI SALAH SATU ZAT

Apabila dalam sistem kesetimbangan homogen, konsentrasi salah satu zat diperbesar, maka kesetimbangan akan bergeser ke arah yang berlawanan dari zat tersebut. Sebaliknya, jika konsentrasi salah satu zat diperkecil, maka kesetimbangan akan bergeser ke pihak zat tersebut.

Contoh: 2SO2(g) + O2(g) « 2SO3(g)

- Bila pada sistem kesetimbangan ini ditambahkan gas SO2, maka kesetimbangan akan bergeser ke kanan.
- Bila pada sistem kesetimbangan ini dikurangi gas O2, maka kesetimbangan akan bergeser ke kiri.

B. PERUBAHAN VOLUME ATAU TEKANAN

Jika dalam suatu sistem kesetimbangan dilakukan aksi yang menyebabkan perubahan volume (bersamaan dengan perubahan tekanan), maka dalam sistem akan mengadakan berupa pergeseran kesetimbangan.
Jika tekanan diperbesar = volume diperkecil, kesetimbangan akan bergeser ke arah jumlah Koefisien Reaksi Kecil.

Jika tekanan diperkecil = volume diperbesar, kesetimbangan akan bergeser ke arah jumlah Koefisien reaksi besar.

Pada sistem kesetimbangan dimana jumlah koefisien reaksi sebelah kiri = jumlah koefisien sebelah kanan, maka perubahan tekanan/volume tidak menggeser letak kesetimbangan.


Contoh:

N2(g) + 3H2(g) « 2NH3(g)

Koefisien reaksi di kanan = 2
Koefisien reaksi di kiri = 4- Bila pada sistem kesetimbangan tekanan diperbesar (= volume diperkecil), maka kesetimbangan akan
bergeser ke kanan.
- Bila pada sistem kesetimbangan tekanan diperkecil (= volume diperbesar), maka kesetimbangan akan
bergeser ke kiri.




C. PERUBAHAN SUHU

Menurut Van't Hoff:- Bila pada sistem kesetimbangan subu dinaikkan, maka kesetimbangan reaksi akan bergeser ke arah yang membutuhkan kalor (ke arah reaksi endoterm).

-
Bila pada sistem kesetimbangan suhu diturunkan, maka kesetimbangan reaksi akan bergeser ke arah yang membebaskan kalor (ke arah reaksi eksoterm).

Contoh:

2NO(g) + O2(g) « 2NO2(g) ; DH = -216 kJ

- Jika suhu dinaikkan, maka kesetimbangan akan bergeser ke kiri.

- Jika suhu diturunkan, maka kesetimbangan akan bergeser ke kanan.

PENGARUH KATALISATOR TERHADAP KESETIMBANGAN

Fungsi katalisator dalam reaksi kesetimbangan adalah mempercepat tercapainya kesetimbangan dan tidak merubah letak kesetimbangan (harga tetapan kesetimbangan Kc tetap), hal ini disebabkan katalisator mempercepat reaksi ke kanan dan ke kiri sama besar.



HUBUNGAN ANTARA HARGA Kc DENGAN Kp

Untuk reaksi umum:

a A(g) + b B(g) « c C(g) + d D(g)


Harga tetapan kesetimbangan:

Kc = [(C)c . (D)d] / [(A)a . (B)b]

Kp = (PCc x PDd) / (PAa x PBb)

dimana: PA, PB, PC dan PD merupakan tekanan parsial masing-masing gas A, B. C dan D.


Secara matematis, hubungan antara Kc dan Kp dapat diturunkan sebagai:

Kp = Kc (RT) Dn

dimana Dn adalah selisih (jumlah koefisien gas kanan) dan (jumlah koefisien gas kiri).

Contoh:

Jika diketahui reaksi kesetimbangan:

CO2(g) + C(s) « 2CO(g)

Pada suhu 300o C, harga Kp= 16. Hitunglah tekanan parsial CO2, jika tekanan total dalaun ruang 5 atm!

Jawab:

Misalkan tekanan parsial gas CO = x atm, maka tekanan parsial gas CO2 = (5 - x) atm.

Kp = (PCO)2 / PCO2 = x2 / (5 - x) = 16 ® x = 4

Jadi tekanan parsial gas CO2 = (5 - 4) = 1 atm

Disosiasi adalah penguraian suatu zat menjadi beberapa zat lain yang lebih sederhana.

Derajat disosiasi adalah perbandingan antara jumlah mol yang terurai dengan jumlah mol mula-mula.

Contoh:

2NH3(g) « N2(g) + 3H2(g)

besarnya nilai derajat disosiasi (a):
a = mol NH3 yang terurai / mol NH3 mula-mula



Harga derajat disosiasi terletak antara 0 dan 1, jika:

a = 0 berarti tidak terjadi penguraian
a = 1 berarti terjadi penguraian sempurna
0 < a < 1 berarti disosiasi pada reaksi setimbang (disosiasi sebagian).

Contoh:

Dalam reaksi disosiasi N2O4 berdasarkan persamaan

N2O4(g) « 2NO2(g)

banyaknya mol N2O4 dan NO2 pada keadaan setimbang adalah sama.

Pada keadaan ini berapakah harga derajat disosiasinya ?

Jawab:

Misalkan mol N2O4 mula-mula = a mol
mol N2O4 yang terurai = a a mol ® mol N2O4 sisa = a (1 - a) mol
mol NO2 yang terbentuk = 2 x mol N2O4 yang terurai = 2 a a mol

Pada keadaan setimbang:

mol N2O4 sisa = mol NO2 yang terbentuk

a(1 - a) = 2a a ® 1 - a = 2 a ® a = 1/3

Tuesday, October 12, 2010

Mengapa Air Mendidih pada Suhu di Bawah 100 derajat Celcius?

Titik didih yang lebih rendah disebabkan oleh dua factor:a ir itu sendiri dan metode pengukuran.

Walaupun saya tidak melihat bagaimana percobaan dilakukan, metode pengukuran tampaknya adalah penyebabnya.

Ketika kita mengukur titik didih air, kita biasanya mendidihkan air dalam piala gelas dan meletakkan thermometer (alkohol atau raksa) ke dalam air. Kelas dasar ilmu sains biasanya menggunakan thermometer alkohol. Kebanyakan orang meletakkan ujung thermometer ke dalam cairannya ketika mengukur suhunya, dan sebagian besar badan thermometer tidak bersentuhan dengan zat yang mereka ukur. Bahkan kebanyakan thermometer alkohol terbuat dari minyak tanah sebagai pengganti alkohol.

Pada thermometer jenis ini, cairan di dalam tabung kaca yang menyempit (yang memiliki radius homogen) memuai ketika dipanaskan, dan meningkatkan isi dalam tabung. Kemudian panjang cairan berhenti (skala) diasumsikan sebagai suhu yang terukur. Karenanya, jika suhu semua cairan di dalam thermometer tidak sama, kita tidak bisa mengatakan bahwa kita mengukur suhu dengan akurat.

Sebagai contoh, kita selalu bisa mengatakan data mengukur suhu ruangan dengan akurat karena seluruh thermometer berada dalam atmosfer yang sama. Bagaimanapun, ketika mengukur thermometer yang berisi cairan, kita harus selalu memastikan bahwa seluruh tabung kaca terendam dalam zat yang diukur.

Contoh lain, bila Anda mengukur suhu air sungai, pastikan untuk meletakkan seluruh thermometer ke dalam air untuk mendapatkan pembacaan yang akurat.

Karena tidak mudah untuk meletakkan thermometer ke dalam air mendidih, kita harus menggunakan peralatan yang tepat. Gunakan tabung berkerucut yang sedikit lebih tinggi dari thermometer. Letakkan sumbat dengan lubang di mulut tabung sehingga thermometer bisa ditahan dengannya. Isi air dalam tabung, didihkan dan baca thermometer.

“Fusi” nanotube menghasilkan tenaga

Suatu tipe baru yang sangat fundamental dari pembangkitan tenaga kemungkinan akan ada di masa mendatang dan berterima kasih kepada para peneliti di Amerika Serikat dan Korea yang telah menciptakan nanotube ‘fusi’ yang memanfaatkan energi dari rekasi kimiawi Alat ini mengubah energi kimiawi kedalam energi listrik, namun sangatlah kecil dibandingkan dengan bateri tradisional yang membuka pintu bagi beberapa aplikasi diantaranya sensor mengambang atau sel bahan bakar baru.

Nanotube karbon dikenal memiliki konduktifitas thermal tinggi yang tidak biasa karena cara merampingkannya didalam paket energi panansnya, dikenal sebagai phonons, dan dapat berjalan melalui strukturnya. Teori baru-baru ini menunjukkan bahwa jika jarak rata-rata antara kolisi phonon sesuai ukuran fisik reaksi eksothermik eksternal, maka phonons mampu untuk menciptakan suatu ‘gelombang reaksi’ terakselerasi yang dengan cepat tersebar ke nanotube.

Michael Strano dan para koleganya pada Massachusetts Institute of Technology, Amerika Serikat, dan Sungkyunkwan University, Korea, sekarang ini telah mendemonstrasikan suatu rekasi gelombang. Apalagi, mereka telah menunjukkan bagaimana hal ini dapat menciptakan suatu ‘gelombang thermopower’ paralel untuk mengubah suatu panas rekasi eksothermic kedalam bentuk listrik. ‘Hal ini menciptakan suatu area baru dalam penelitian energi,’ kata Strano.

Untuk menciptakan alat mereka, kelompok Strano membungkus lapisan tebal bahan bakar berukuran 7nm yang dikenal dengan cyclotrimethylene trinitramine (TNA) sepanjang nanotube. Setelah TNA dinyalakan, gelombang rekasi mulai bergerak menuju struktur sementara itu memasangkan kembali pada TNA yang tidak digunakan- seperti ‘fusi pada steroid’, menurut Strano. Sebaliknya, pengaruh arus balik ini menciptakan gelombang thermopower, yang menghasilkan arus listrik paralel.

Penyalaaan pada salah satu ujung TNA-CNT menghasilkan suatu rekasi eksothermic dan transfer panas seputar panjangnya CNT, dengan pengaruh arus balik

Sudah ada beberapa aplikasi pada beberapa kartu suatu pembangkit tenaga nanotube. Salah satu keuntungannnya adalah bahwa saat semua bahan bakarnya digunakan, mereka dapat diisi ulang dengan tenaga lebih. Hal ini membuka suatu pintu terhadap suatu tipe baru sel bahan bakar, yang didalamnya bahan bakar cair seperti methanol diinjeksikan kedalam susunan nanotube bagi pembangkitan thermopower, dan kemudian dire-injeksikan lagi saat digunakan kembali. Meskipun jenis teknologi ini akan membutuhkan penelitian lanjut, jenis ini mempunyai potensi bagi efisiensi yang lebih tinggi ketimbang mesin pembakaran tradisional, dan tidak akan mempunyai bagian yang bergerak.

Sebagai tambahan, berat nanotube yang seringan bulu berarti bahwa mereka dapat memberi tenaga bagi semua jenis alat yang ultra kecil. ‘Bayangkan suatu sensor yang dapat mengambang di udara seperti debu, namun mengirimkan sinyal telepon seluler saat diinginkan,’ usul Strano.

Wednesday, October 6, 2010

LHITIUM

Litium merupakan golongan logam alkali (IA) dimana dia memiliki konfigurasi elektron 1s2 2s1. Litium berbentuk padatan dengan densitas setengah densitas air, dengan demikian litium menjadi logam dengan densitas paling kecil diantara logam yang lain. Permukaan Litium yang logamnya baru dipotong berwarnakeperakan dan akan langsung berubah menjadi abu-abu jika terkena kontak dengan udara.

Logam litium larut dalam senyawaan alifatik amina berrantai pendek akan tetapi tidak larut dalam hidrokarbon. Logam ini banyak dipergunakan untuk reaksi organikbegitu juga untuk reaksi anorganik. Litium mudah bereaksi dengan nitrogen bebas diudara membentuk nitrure, dan dengan hidrogen pada suhu 500 C membentuk hidrida, bereaksi dengan air, bereaksi dengan karbon membentuk carbida, dan mudah bereaksi dengan halogen membentuk halida dengan mengemisikan cahaya. Aplikasi yang penting adalah litium bereaksi dengan senyawa asetilenik membentuk litium acetilures dimana senyawa ini berperan penting dalam sintesis vitamin A.

Isotop Litium
4Li(4.02), 5Li(5.0125), 6Li(6.0151), 7Li(7.016), 8Li(8.022487), 9Li(9.0267894), 10Li(10.035481), 11Li(11.043798). didalam kurung menjunjukkn no massa litium.

Sifat Kimia Litium
» Nomor atom: 3
» Nomor Massa : 6.941 g/mol
» Keelektronegatifias (Pauli): 1
» Densitas: 0.53 g/cm3 pada 20 C
» Titik leleh : 180.5 C
» Titik Didih : 1342 C
» Jari-jari Van Der Walls : 0.145 nm
» Jari-jari ion : 0.06 nm
» Isotop : Li6 dan Li7
» Konfigurasi elektron: 1s2 2s1
» Energi ionisasi: 520.1 kJ/mol
» Potensial standar : -3.02 V
» Ditemukan oleh: ohann Arfvedson in 1817
» Kristal struktur: cubic body center

Memanaskan litium dapat menyebabkan lekadan dan kebakaran. Serbuk litium secara spontan akan terbakar jika didispersikan ke udara bebas. Pada saat pemanasan terjadi maka kemungkinan akan terbentuk kabut atau gas yang berbahaya. bereaksi secara spontan dengan oksidator kuat, air, asam dan senyawa lain seperti halogen, asbes, hidrokarbon, menyebabkan ledakan.

Sifat fisika Litium
» Koefisien ekspansi termal 56exp-6
» Koduktifitas elektrik 0.106 x 10exp6/omh.cm
» Konduktifitas termal 0.847 W/cmK
» Densitas 0.534 g/cc
» Modulus elastisitas bulk 11/GPA Rigiditas 4.24/GPa Youngs 4.91/GPA
» Entalpi atomisasi 160.7 KJ/mol
» Entalpi Fusi 3 KJ/mol
» Entalpi vaporasi 134.7 KJ/mol
» Flammabilitas : padatan mudah terbakar
» Kekerasan 0.6 Mohs
» Panas penguapan 145.92 KJ/mol
» Volume molar 13 cm3/mol
» Kalor jenis 3.6 J/gK
» tekanan uap 1.6 epx-8 Pa

Bagaimana Cara Mendapatkan Lithium?
Sintesis logam litium memerlukan teknologi elektrolisis dan proses ini berlagsung sangat sulit disebabkan sulitnya memasukkan satu elektron kepada ion logm litium yang bersifat sangat elektropositif. Biji litium yang penting adalah spodumene, LiAl(SiO3)2. Bentuk litium alfa akan diubah menjadi bentuk litium beta pada kisaran suhu antara 1100 C. Campuran kemudian dicampur dengan asam sulfat panas kemudian diekstraksi ke dalam air untuk mendapatkan litium sulfat Li2SO4. Senyawaan sulfat ini kemudian ditambahkan natrium karbonat untuk mendapatkan garam Li2CO3 yang tidak mudah larut di dalam air. Reaksi litium karbonat dengan asam klorida akan diperoleh litium klorida LiCl yang siap untuk dielektrolisis.

Katalis Baru Untuk Produksi Hidrogen Dari Air Laut

Suatu jenis katalis baru yang dapat menghasilkan hidrogen dari air laut telah dikembangkan oleh peneliti di Amerika. Katalis kompleks logam-oxo ini menunjukkan aktifitas katalitik dan kestabilan yang sangat tinggi, dan biaya produksinya cukup murah, kata para peneliti tersebut.

Hidrogen menarik perhatian para peneliti disebabkan dapat dijadikan sebagai bahan bakar yang ramah lingkungan. Pada dasarnya, hidrogen diproduksi dengan mereaksikan antara uap air dengan gas metana dengan meggunakan katalis nikel, kekurangan metode ini adalah menghasilkan hasil samping berupa gas CO2 yag dapat mengakibatkan efek rumah kaca.

Jeffrey Long dan koleganya dari Universitas California, Barkeley, USA, membuat kompleks molibdenum-oxo yang bertindak sebagai elektrokatalis, sehingga dapat mereduksi energi yang diperlukan untuk membuat hidrogen dari air dengan menggunakan elektroda merkuri. Sebagai logam yang banyak terdapat dialam molibdenum dibandingkan dengan merkuri dimana untuk pembuatan skala produksi yang besar diperlukan biaya yang cukup tinggi.

Long menjelaskan bahwa kestabilan dari katalis disebabkan karena ikatan ligan terhadap logam molibdenum pada 5 posisi (pentadentat) sehingga ikatan tersebut membuat kompleksnya menjadi kuat. Molekul kompleks sangat kuat dan stabil dalam lingkungan air untuk jangka waktu yang lama sehingga kami tidak melihat adanya degradasi aktifitas katalis setelah tiga hari penggunaanya, kata Long.

Secara khsus, katalis yang dibuat Long juga stabil terhadap impuritas yang terdapat di dalam air laut, artinya bahwa air laut langsung bisa dipakai sebagai bahan produksi tanpa adanya pengolahan terlebih dahulu. Para tim peneliti menggunakan air laut dari California dan menghasilkan hasil yang sama seperti mereka menggunakan air murni pada pH netral. Sebagai tambahan, tidak diperlukan adanya penambahan elektrolit jika kit menggunakan air laut, sehingga hal ini mereduksi biaya produksi dan menghilangkan keperluan asam organik sebagai pelarut yang memiliki efek samping dpat medegradasi katalis.

Long dan timnya berharap untuk dapat mengembangkan sistem ini sehingga dimasa yang akan datang katali ini dimungkinkan dapat dipakai bersama solar panel untuk menghasilkan gas hidrogen. Tim peneliti tersebut sekarang memodifikasi katalis untuk mereduksi potensial dimana reaksi elektrokimia terjadi dan membuat sistem menjadi jauh lebih baik.

Tuesday, October 5, 2010

Pelarut yang dapat masuk dan keluar dari air

Pelarut yang mengubah hidrophilisitas mereka pada penambahan dan pemindahan CO2 dapat menghilangkan kebutuhan untuk melakukan distilasi energi intensif pada skala industri.


Pada industri pemrosesan bahan kimiawi, pemisahan pelarut dari produk biasanya dilakukan dengan distilasi dan membutuhkan penambahan pelarut yang mudah menguap dan sejumlah energi yang sangat besar. Sekarang ini, Philip Jessop dan para koleganya pada Queen’s University di Kingston, Kanada telah mengembangkan suatu tipe pelarut baru yang dapat mengubah dari hidrophobik menjadi hidrophilik yang artinya dapat dipindahkan dari produknya tanpa distilasi.

Tim Jessop pertama kali memperkenalkan ide pelarut yang mengubah properti salvation mereka pada tahun 2005, saat mereka menemukan non-ionis dan non-polar amidines yang ditransformasikan kedalam suatu ionis dan cairan polar garam hexylcarbonate setelah menguap pada CO2 untuk beberapa jam. Setelah memelajari berbagai guanidines dan amidines, sekarang mereka telah menemukan bahwa solvent N,N,N‘-tributylpentanamidine, yang biasanya tidak dapat larut dalam air berubah menjadi dapat terlarut sepenuhnya dengan air saat CO2 ditambahkan.

Minyak kedelai yang baru-baru ini diekstraksikan dari kacang kedelai dengan menggunakan hexane, yang kemudian haruslah dipindahkan dengan distilasi. Sebagai suatu alternatif, pelarut yang dapat diganti pada bentuk hydrophobik-nya dapat digunakan untuk mengekstraksi minyak. Lalu, penambahan air terkarbonasi mengubah pelarut menjadi bentuk hydrophilik dan suatu system biphasic yang berisi suatu lapisan minyak kedelai murni dan lapisan aqueous dibentuk. Setelah menuangkan minyak keluar, CO2 dengan mudah dapat dipindahkan dari larutan aqueous dengan memanaskan dan pelarut mengubah kembali ke keadaan hydrophobik-nya yang memungkinkan untuk dapat dipisahkan dari air dan digunakan kembali.

‘Teknologi ini dapat berguna pada aplikasi apapun, dan kemungkinan lebih banyak lagi yang mungkin belum kita pernah pikirkan sebelumnya,’ kata Jessop.

Nils Theysson, seorang ahli pada pelarut alternatif pada Max Planck Institute for Coal Research, Mülheim, Jerman merasakan bahwa ini merupakan benar-benar suatu langkah maju. ‘Suatu pelarut dengan pengubahan yang sangat mudah pada tingkat hidrophilisitasnya belum pernah terjadi sebelumnya dan patut mendapatkan perhatian spesial, dan banyaknya aplikasi yang potensial dari pelarut yang hidrophilisitasnya dapat diubah didokumentasikan pada kebanyakan studi kasus yang menstimulasi,’ katanya.

Tim Jessop sekarang bekerja pada pengembangan pelarut yang dapat diubah dengan biaya murah dan berharap proses ini dapat diskalakan pada industri. ‘Kita masih mengerjakan suatu analisa yang tepat persyaratan energi dan dampak lingkungan pada proses baru yang dibandingkan dengan distilasi,’ tambahnya.